203
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Small airway remodeling in a sheep model of bleomycin-induced pulmonary fibrosis

ORCID Icon, , ORCID Icon, , , & show all
Pages 409-419 | Received 01 Jun 2020, Accepted 05 Oct 2020, Published online: 14 Oct 2020

References

  • Chung MP, Rhee CH. Airway obstruction in interstitial lung disease. Curr Opin Pulm Med. 1997;3(5):332–335. doi:10.1097/00063198-199709000-00003.
  • Ostrow D, Cherniack RM. Resistance to airflow in patients with diffuse interstitial lung disease. Am Rev Respir Dis. 1973;108(2):205–210. doi:10.1164/arrd.1973.108.2.205.
  • Fulmer JD, Roberts WC, von Gal ER, Crystal RG. Small airways in idiopathic pulmonary fibrosis. Comparison of morphologic and physiologic observations. J Clin Invest. 1977;60(3):595–610. doi:10.1172/JCI108811.
  • Wilcox AG. Small airway involvement in interstitial lung disease: radiologic evidence. Curr Opin Pulm Med. 2000;6(5):399–403. doi:10.1097/00063198-200009000-00002.
  • Pappas K. Bronchiolitis and bronchial disorders in interstitial lung disease. Curr Opin Pulm Med. 2011;17(5):316–324. doi:10.1097/MCP.0b013e328349ae94.
  • Figueira de Mello GC, Ribeiro Carvalho CR, Adib Kairalla R, et al. Small airway remodeling in idiopathic interstitial pneumonias: a pathological study. Respiration. 2010;79(4):322–332. doi:10.1159/000235722.
  • Fulmer JD, Roberts WC. Small airways and interstitial pulmonary disease. Chest. 1980;77(4):470–472. doi:10.1378/chest.77.4.470.
  • Verleden SE, Tanabe N, McDonough JE, et al. Small airways pathology in idiopathic pulmonary fibrosis: a retrospective cohort study. Lancet Respir Med. 2020;8(6):573–584. doi:10.1016/S2213-2600(19)30356-X.
  • Chan HF, Weatherley ND, Johns CS, et al. Airway microstructure in idiopathic pulmonary fibrosis: assessment at hyperpolarized 3He diffusion-weighted MRI. Radiology. 2019;291(1):223–229. doi:10.1148/radiol.2019181714.
  • Boulet LP, Sterk PJ. Airway remodelling: the future. Eur Respir J. 2007;30(5):831–834. doi:10.1183/09031936.00110107.
  • James AL, Wenzel S. Clinical relevance of airway remodelling in airway diseases. Eur Respir J. 2007;30(1):134–155. doi:10.1183/09031936.00146905.
  • Sciurba FC. Physiologic similarities and differences between COPD and asthma. Chest. 2004;126(2 Suppl):117S–124S. doi:10.1016/S0012-3692(15)31481-1.
  • Zanini A, Chetta A, Imperatori AS, Spanevello A, Olivieri D. The role of the bronchial microvasculature in the airway remodelling in asthma and COPD. Respir Res. 2010;11:132. doi:10.1186/1465-9921-11-132.
  • Alagappan VK, de Boer WI, Misra VK, Mooi WJ, Sharma HS. Angiogenesis and vascular remodeling in chronic airway diseases. Cell Biochem Biophys. 2013;67(2):219–234. doi:10.1007/s12013-013-9713-6.
  • Organ L, Bacci B, Koumoundouros E, et al. A novel segmental challenge model for bleomycin-induced pulmonary fibrosis in sheep. Exp Lung Res. 2015;41(3):115–134. doi:10.3109/01902148.2014.985806.
  • Van der Velden J, Snibson KJ. Airway disease: the use of large animal models for drug discovery. Pulm Pharmacol Ther. 2011;24(5):525–532. doi:10.1016/j.pupt.2011.02.001.
  • Organ L, Bacci B, Koumoundouros E, et al. Inhibition of the KCa3.1 channel alleviates established pulmonary fibrosis in a large animal model. Am J Respir Cell Mol Biol. 2017;56(4):539–550. doi:10.1165/rcmb.2016-0092OC.
  • Dewage SNV, Organ L, Koumoundouros E, et al. The efficacy of pirfenidone in a sheep model of pulmonary fibrosis. Exp Lung Res. 2019;45(9–10):310–322. doi:10.1080/01902148.2019.1695019.
  • Organ L, Bacci B, Koumoundouros E, et al. Structural and functional correlations in a large animal model of bleomycin-induced pulmonary fibrosis. BMC Pulm Med. 2015;15(1):81. doi:10.1186/s12890-015-0071-6.
  • Cetti EJ, Moore AJ, Geddes DM. Collateral ventilation. Thorax. 2006;61(5):371–373. doi:10.1136/thx.2006.060509.
  • Tsai LW, Hoffman AM, Mazan MR, Ingenito EP. Bronchoscopic measurement of collateral ventilation in a sheep model of emphysema. Respiration; Int Rev Thoracic Dis. 2007;74(5):565–571. doi:10.1159/000103514.
  • James AL, Maxwell PS, Pearce-Pinto G, Elliot JG, Carroll NG. The relationship of reticular basement membrane thickness to airway wall remodeling in asthma. Am J Respir Crit Care Med. 2002;166(12):1590–1595. doi:10.1164/rccm.2108069.
  • Bai A, Eidelman DH, Hogg JC, et al. proposed nomenclature for quantifying subdivisions of the bronchial wall. J Appl Physiol. 1994;77(2):1011–1014. doi:10.1152/jappl.1994.77.2.1011.
  • Elliot JG, Budgeon CA, Harji S, Jones RL, James AL, Green FH. The effect of asthma on the perimeter of the airway basement membrane. J Appl Physiol (1985). 2015;119(10):1114–1117. doi:10.1152/japplphysiol.00076.2015.
  • Voynow JA, Fischer BM, Malarkey DE, et al. Neutrophil elastase induces mucus cell metaplasia in mouse lung. Am J Physiol Lung Cell Mol Physiol. 2004;287(6):L1293–L1302. doi:10.1152/ajplung.00140.2004.
  • Verbeken EK, Cauberghs M, Lauweryns JM, Van de Woestijne KP. Structure and function in fibrosing alveolitis. J Appl Physiol (1985). 1994;76(2):731–742. doi:10.1152/jappl.1994.76.2.731.
  • Chetta A, Marangio E, Olivieri D. Pulmonary function testing in interstitial lung diseases. Respiration. 2004;71(3):209–213. doi:10.1159/000077416.
  • Holgate ST, Davies DE, Lackie PM, Wilson SJ, Puddicombe SM, Lordan JL. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol. 2000;105(2 Pt 1):193–204. doi:10.1016/S0091-6749(00)90066-6.
  • Holgate ST. Epithelial damage and response. Clin Exp Allergy. 2000;30(Suppl 1):37–41. doi:10.1046/j.1365-2222.2000.00095.x.
  • Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME. Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc. 2008;5(7):772–777. doi:10.1513/pats.200805-041HR.
  • Davies DE. The role of the epithelium in airway remodeling in asthma. Proc Am Thorac Soc. 2009;6(8):678–682. doi:10.1513/pats.200907-067DP.
  • Polosukhin VV, Cates JM, Lawson WE, et al. Bronchial secretory immunoglobulin a deficiency correlates with airway inflammation and progression of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;184(3):317–327. doi:10.1164/rccm.201010-1629OC.
  • Selman M, Pardo A. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc Am Thorac Soc. 2006;3(4):364–372. doi:10.1513/pats.200601-003TK.
  • Khalil N, O'Connor RN, Unruh HW, et al. Increased production and immunohistochemical localization of transforming growth factor-beta in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 1991;5(2):155–162. doi:10.1165/ajrcmb/5.2.155.
  • Sheppard D. Transforming growth factor beta: a central modulator of pulmonary and airway inflammation and fibrosis. Proc Am Thorac Soc. 2006;3(5):413–417. doi:10.1513/pats.200601-008AW.
  • Odajima N, Betsuyaku T, Nasuhara Y, et al. Extracellular matrix metalloproteinase inducer in interstitial pneumonias. Hum Pathol. 2006;37(8):1058–1065. doi:10.1016/j.humpath.2006.03.006.
  • Holgate ST, Lackie P, Wilson S, Roche W, Davies D. Bronchial epithelium as a key regulator of airway allergen sensitization and remodeling in asthma. Am J Respir Crit Care Med. 2000;162(3 Pt 2):S113–S117. doi:10.1164/ajrccm.162.supplement_2.ras-12.
  • Vuorinen K, Ohlmeier S, Leppäranta O, Salmenkivi K, Myllärniemi M, Kinnula VL. Peroxiredoxin II expression and its association with oxidative stress and cell proliferation in human idiopathic pulmonary fibrosis. J Histochem Cytochem. 2008;56(10):951–959. doi:10.1369/jhc.2008.951806.
  • Plantier L, Debray M-P, Estellat C, et al. Increased volume of conducting airways in idiopathic pulmonary fibrosis is independent of disease severity: a volumetric capnography study. J Breath Res. 2016;10(1):16005. doi:10.1088/1752-7155/10/1/016005.
  • Chilosi M, Poletti V, Murer B, et al. Abnormal re-epithelialization and lung remodeling in idiopathic pulmonary fibrosis: the role of deltaN-p63. Lab Invest. 2002;82(10):1335–1345. doi:10.1097/01.lab.0000032380.82232.67.
  • Derseh HB, Dewage SNV, Perera KUE, et al. KCa3.1 channel blockade attenuates microvascular remodelling in a large animal model of bleomycin-induced pulmonary fibrosis. Sci Rep. 2019;9(1):19893. doi:10.1038/s41598-019-56412-z.
  • Turner-Warwick M. Precapillary systemic-pulmonary anastomoses. Thorax. 1963;18:225–237. doi:10.1136/thx.18.3.225.
  • Peao MN, Aguas AP, de Sa CM, Grande NR. Neoformation of blood vessels in association with rat lung fibrosis induced by bleomycin. Anat Rec. 1994;238(1):57–67. doi:10.1002/ar.1092380108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.