138
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Proteomic global proteins analysis in blast lung injury reveals the altered characteristics of crucial proteins in response to oxidative stress, oxidation-reduction process and lipid metabolic process

, , , , , , , & show all
Pages 275-290 | Received 24 May 2022, Accepted 30 Oct 2022, Published online: 08 Nov 2022

References

  • Hubbard WB, Lashof-Sullivan M, Greenberg S, et al. Hemostatic nanoparticles increase survival, mitigate neuropathology and alleviate anxiety in a rodent blast trauma model. Sci Rep. 2018;8(1):10622. doi:10.1038/s41598-018-28848-2
  • Singleton JA, Gibb IE, Bull AM, et al. Primary blast lung injury prevalence and fatal injuries from explosions: insights from postmortem computed tomographic analysis of 121 improvised explosive device fatalities. J Trauma Acute Care Surg. 2013;75(2 Suppl 2):S269–S74. doi:10.1097/TA.0b013e318299d93e
  • Smith JE, Watts S, Spear AM, et al. Nebulised recombinant activated factor VII (rFVIIa) does not attenuate the haemorrhagic effects of blast lung injury. J R Army Med Corps. 2019;165(1):51–56. doi:10.1136/jramc-2018-001029
  • Scott TE, Das A, Haque M, et al. Management of primary blast lung injury: a comparison of airway pressure release versus low tidal volume ventilation. Intensive Care Med Exp. 2020;8(1):26.
  • Chen K, Yang J, Xiao F, et al. Early peritoneal dialysis ameliorates blast lung injury by alleviating pulmonary edema and inflammation. Shock. 2020;53(1):95–102. doi:10.1097/SHK.0000000000001325
  • Liu YE, Tong CC, Zhang YB, et al. Chitosan oligosaccharide ameliorates acute lung injury induced by blast injury through the DDAH1/ADMA pathway. PLoS One. 2018;13(2):e0192135. doi:10.1371/journal.pone.0192135
  • Ning J, Mo L, Yi B, et al. Therapeutic whole-body hypothermia protects remote lung, liver, and kidney injuries after blast limb trauma in rats. Anesthesiology. 2016;124(6):1360–1371. doi:10.1097/ALN.0000000000001106
  • Tong C, Liu Y, Zhang Y, et al. Shock waves increase pulmonary vascular leakage, inflammation, oxidative stress, and apoptosis in a mouse model. Exp Biol Med (Maywood). 2018;243(11):934–944. doi:10.1177/1535370218784539
  • Jiang L, Yin X, Chen YH, et al. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I. Theranostics. 2021;11(4):1703–1720. doi:10.7150/thno.43895
  • Pham L, Wright DK, O'Brien WT, et al. Behavioral, axonal, and proteomic alterations following repeated mild traumatic brain injury: Novel insights using a clinically relevant rat model. Neurobiol Dis. 2021;148:105151. doi:10.1016/j.nbd.2020.105151
  • Liu Y, Tong C, Cong P, et al. Proteomic analysis revealed the characteristics of key proteins involved in the regulation of inflammatory response, leukocyte transendothelial migration, phagocytosis, and immune process during early lung blast injury. Oxid Med Cell Longev. 2021;2021:8899274. doi:10.1155/2021/8899274
  • Zhou H, Finkemeier I, Guan W, et al. Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves. Plant Cell Environ. 2018;41(5):1139–1153. doi:10.1111/pce.13100
  • Wang Z, Zhang R, Liu F, et al. TMT-based quantitative proteomic analysis reveals proteomic changes involved in longevity. Proteomics Clin Appl. 2019;13(4):e1800024. doi:10.1002/prca.201800024
  • Du Y, Wang Y, Xu Q, et al. TMT-based quantitative proteomics analysis reveals the key proteins related with the differentiation process of goat intramuscular adipocytes. BMC Genomics. 2021;22(1):417. doi:10.1186/s12864-021-07730-y
  • Cong P, Wang T, Tong C, et al. Resveratrol ameliorates thoracic blast exposure-induced inflammation, endoplasmic reticulum stress and apoptosis in the brain through the Nrf2/Keap1 and NF-kappaB signaling pathway. Injury. 2021;52(10):2795–2802. doi:10.1016/j.injury.2021.08.019
  • Cong P, Tong C, Liu Y, et al. CD28 deficiency ameliorates thoracic blast exposure-induced oxidative stress and apoptosis in the brain through the PI3K/Nrf2/Keap1 signaling pathway. Oxid Med Cell Longev. 2019;2019:8460290. doi:10.1155/2019/8460290
  • Su LJ, Zhang JH, Gomez H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843. doi:10.1155/2019/5080843
  • Liu H, Gambino F, Jr., Algenio CS, et al. Inflammation and oxidative stress induced by lipid peroxidation metabolite 4-hydroxynonenal in human corneal epithelial cells. Graefes Arch Clin Exp Ophthalmol. 2020;258(8):1717–1725. doi:10.1007/s00417-020-04647-2
  • Tomita K, Takashi Y, Ouchi Y, et al. Lipid peroxidation increases hydrogen peroxide permeability leading to cell death in cancer cell lines that lack mtDNA. Cancer Sci. 2019;110(9):2856–2866. doi:10.1111/cas.14132
  • Petrovic S, Arsic A, Ristic-Medic D, et al. Lipid peroxidation and antioxidant supplementation in neurodegenerative diseases: A review of human studies. Antioxidants (Basel). 2020;9(11):1128. doi:10.3390/antiox9111128
  • Breitzig M, Bhimineni C, Lockey R, et al. 4-Hydroxy-2-nonenal: a critical target in oxidative stress? Am J Physiol Cell Physiol. 2016;311(4):C537–C543. doi:10.1152/ajpcell.00101.2016
  • Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem. 2017;524:13–30. doi:10.1016/j.ab.2016.10.021
  • Romano A, Serviddio G, Calcagnini S, et al. Linking lipid peroxidation and neuropsychiatric disorders: focus on 4-hydroxy-2-nonenal. Free Radic Biol Med. 2017;111:281–293. doi:10.1016/j.freeradbiomed.2016.12.046
  • Jaganjac M, Milkovic L, Gegotek A, et al. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med. 2020;157:128–153. doi:10.1016/j.freeradbiomed.2019.11.023
  • Lakshmi SP, Reddy AT, Kodidhela LD, et al. Epigallocatechin gallate diminishes cigarette smoke-induced oxidative stress, lipid peroxidation, and inflammation in human bronchial epithelial cells. Life Sci. 2020;259:118260. doi:10.1016/j.lfs.2020.118260
  • Kochanek PM, Dixon CE, Shellington DK, et al. Screening of biochemical and molecular mechanisms of secondary injury and repair in the brain after experimental blast-induced traumatic brain injury in rats. J Neurotrauma. 2013;30(11):920–937. doi:10.1089/neu.2013.2862
  • Zhang Z, Li H, Liang Z, et al. Vaporized perfluorocarbon inhalation attenuates primary blast lung injury in canines by inhibiting mitogen-activated protein kinase/nuclear factor-kappaB activation and inducing nuclear factor, erythroid 2 like 2 pathway. Toxicol Lett. 2020;319:49–57. doi:10.1016/j.toxlet.2019.10.019
  • Toklu HZ, Yang Z, Oktay S, et al. Overpressure blast injury-induced oxidative stress and neuroinflammation response in rat frontal cortex and cerebellum. Behav Brain Res. 2018;340:14–22. doi:10.1016/j.bbr.2017.04.025
  • Park JE, Park JS, Leem YH, et al. NQO1 mediates the anti-inflammatory effects of nootkatone in lipopolysaccharide-induced neuroinflammation by modulating the AMPK signaling pathway. Free Radic Biol Med. 2021;164:354–368. doi:10.1016/j.freeradbiomed.2021.01.015
  • Ling Y, Li ZZ, Zhang JF, et al. MicroRNA-494 inhibition alleviates acute lung injury through Nrf2 signaling pathway via NQO1 in sepsis-associated acute respiratory distress syndrome. Life Sci. 2018;210:1–8. doi:10.1016/j.lfs.2018.08.037
  • Salman M, Tabassum H, Parvez S. Nrf2/HO-1 mediates the neuroprotective effects of pramipexole by attenuating oxidative damage and mitochondrial perturbation after traumatic brain injury in rats. Dis Model Mech. 2020;13(8):dmm045021.
  • Chen L, Zhang WL, Xie DQ, et al. Sulforaphane alleviates hepatic ischemia-reperfusion injury through promoting the activation of Nrf-2/HO-1 signaling. Transpl Immunol. 2021;68:101439. doi:10.1016/j.trim.2021.101439
  • Zhou Y, Tian M, Wang HD, et al. Activation of the Nrf2-ARE signal pathway after blast induced traumatic brain injury in mice. Int J Neurosci. 2019;129(8):801–807. doi:10.1080/00207454.2019.1569652
  • Herlin M, McGuigan FE, Luthman H, et al. Polymorphisms in inflammation associated genes ALOX15 and IL-6 are associated with bone properties in young women and fracture in elderly. Bone. 2015;79:105–109. doi:10.1016/j.bone.2015.05.035
  • Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene. 2015;573(1):1–32. doi:10.1016/j.gene.2015.07.073
  • Zhao J, Piao X, Wu Y, et al. Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomed Pharmacother. 2020;127:110151. doi:10.1016/j.biopha.2020.110151
  • Suzuki H, Kayama Y, Sakamoto M, et al. Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. Diabetes. 2015;64(2):618–630. doi:10.2337/db13-1896
  • Shalini SM, Herr DR, Ong WY. The analgesic and anxiolytic effect of souvenaid, a novel nutraceutical, is mediated by alox15 activity in the prefrontal cortex. Mol Neurobiol. 2017;54(8):6032–6045. doi:10.1007/s12035-016-0138-2
  • Walters JLH, De Iuliis GN, Dun MD, et al. Pharmacological inhibition of arachidonate 15-lipoxygenase protects human spermatozoa against oxidative stress. Biol Reprod. 2018;98(6):784–794. doi:10.1093/biolre/ioy058
  • Adel S, Karst F, Gonzalez-Lafont A, et al. Evolutionary alteration of ALOX15 specificity optimizes the biosynthesis of antiinflammatory and proresolving lipoxins. Proc Natl Acad Sci U S A. 2016;113(30):E4266–75. doi:10.1073/pnas.1604029113
  • Gaberel T, Gakuba C, Zheng Y, et al. Impact of 12/15-lipoxygenase on brain injury after subarachnoid hemorrhage. Stroke. 2019;50(2):520–523. doi:10.1161/STROKEAHA.118.022325
  • Zhu C, Weng QY, Zhou LR, et al. Homeostatic and early-recruited CD101(-) eosinophils suppress endotoxin-induced acute lung injury. Eur Respir J. 2020;56(5):1902354. doi:10.1183/13993003.02354-2019
  • Xiong G, Stewart RL, Chen J, et al. Collagen prolyl 4-hydroxylase 1 is essential for HIF-1alpha stabilization and TNBC chemoresistance. Nat Commun. 2018;9(1):4456. doi:10.1038/s41467-018-06893-9
  • Li H, Li J, Jiang X, et al. Melatonin enhances atherosclerotic plaque stability by inducing prolyl-4-hydroxylase alpha1 expression. J Hypertens. 2019;37(5):964–971. doi:10.1097/HJH.0000000000001979
  • Shi R, Gao S, Smith AH, et al. Superoxide-induced Type I collagen secretion depends on prolyl 4-hydroxylases. Biochem Biophys Res Commun. 2020;529(4):1011–1017. doi:10.1016/j.bbrc.2020.07.002
  • Manupati K, Debnath S, Goswami K, et al. Glutathione S-transferase omega 1 inhibition activates JNK-mediated apoptotic response in breast cancer stem cells. Febs J. 2019;286(11):2167–2192. doi:10.1111/febs.14813
  • Li J, Zhao L, Zhang Y, et al. Imbalanced immune responses involving inflammatory molecules and immune-related pathways in the lung of acute and subchronic arsenic-exposed mice. Environ Res. 2017;159:381–393. doi:10.1016/j.envres.2017.08.036
  • Lin X, Xia Y, Wang G, et al. Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice. Front Microbiol. 2018;9:2684.
  • Brown EG, Goldman SM. Traumatic brain injury and alpha-synuclein: Proceed with caution. Neurology. 2020;94(8):335–336. doi:10.1212/WNL.0000000000008991
  • Acosta G, Race N, Herr S, et al. Acrolein-mediated alpha-synuclein pathology involvement in the early post-injury pathogenesis of mild blast-induced Parkinsonian neurodegeneration. Mol Cell Neurosci. 2019;98:140–154. doi:10.1016/j.mcn.2019.06.004
  • Ryu H, Kim J, Kim D, et al. Cellular and molecular links between autoimmunity and lipid metabolism. Mol Cells. 2019;42(11):747–754.
  • Wang G, Qiu M, Xing X, et al. Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis. Sci Transl Med. 2022;14(630):eabk2756.
  • Li X, Liu X, Zhang Y, et al. Hepatoprotective effect of apolipoprotein A4 against carbon tetrachloride induced acute liver injury through mediating hepatic antioxidant and inflammation response in mice. Biochem Biophys Res Commun. 2021;534:659–665. doi:10.1016/j.bbrc.2020.11.024
  • Lasch A, Marx-Stoelting P, Braeuning A, et al. More than additive effects on liver triglyceride accumulation by combinations of steatotic and non-steatotic pesticides in HepaRG cells. Arch Toxicol. 2021;95(4):1397–1411. doi:10.1007/s00204-021-02997-2
  • Abulizi A, Camporez JP, Zhang D, et al. Ectopic lipid deposition mediates insulin resistance in adipose specific 11beta-hydroxysteroid dehydrogenase type 1 transgenic mice. Metabolism. 2019;93:1–9. doi:10.1016/j.metabol.2018.12.003
  • Mori RC, Santos-Bezerra DP, Pelaes TS, et al. Variants in HSD11B1 gene modulate susceptibility to diabetes kidney disease and to insulin resistance in type 1 diabetes. Diabetes Metab Res Rev. 2021;37(1):e3352. doi:10.1002/dmrr.3352
  • Zeng X, Jedrychowski MP, Chen Y, et al. Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation. Genes Dev. 2016;30(16):1822–1836. doi:10.1101/gad.285312.116
  • Pereira CD, Azevedo I, Monteiro R, et al. 11beta-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus. Diabetes Obes Metab. 2012;14(10):869–881. doi:10.1111/j.1463-1326.2012.01582.x
  • Qu J, Fourman S, Fitzgerald M, et al. Low-density lipoprotein receptor-related protein 1 (LRP1) is a novel receptor for apolipoprotein A4 (APOA4) in adipose tissue. Sci Rep. 2021;11(1):13289. doi:10.1038/s41598-021-92711-0
  • Obinata H, Kuo A, Wada Y, et al. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. J Lipid Res. 2019;60(11):1912–1921. doi:10.1194/jlr.RA119000277
  • Wang Z, Wang L, Zhang Z, et al. Apolipoprotein A-IV involves in glucose and lipid metabolism of rat. Nutr Metab (Lond). 2019;16:41. doi:10.1186/s12986-019-0367-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.