1,765
Views
63
CrossRef citations to date
0
Altmetric
Original Articles

Leaf nitrogen determination using non-destructive techniques–A review

, , &
Pages 928-953 | Received 01 Apr 2014, Accepted 23 Feb 2015, Published online: 18 Apr 2017

References

  • Adamsen, F. J., T. A. Coffelt, and M. Nelson. 2000. Method for using images from a color digital camera to estimate flower number. Crop Science 40: 704–70.
  • Adamsen, F. J., P. J. Pinter, E. M. Barnes, R. L. Lamorte, G. W. Wall, S. W. Leavitt, and B. A. Kimball. 1999. Measuring wheat senescence with a digital camera. Crop Science 39: 719–724.
  • Ahmad, I., A. Muhamin, and I. M. Naeem. 2006. Real-time specific weed recognition system using histogram analysis. World Academy of Science, Engineering and Technology 16: 1307–6884.
  • Aitkenhead, M. J., I. A. Dalgetty, C. E. Mullins, A. J. S. McDonald, and N. J. Strachan. 2003. Weed and crop discrimination using image analysis and artificial intelligence methods. Computers and Electronics in Agriculture 39: 157–171.
  • Alchanatis, V., Z. Schmilovitch, and M. Meron. 2005. In-field assessment of single leaf nitrogen status by spectral reflectance measurements. Precision Agriculture 6: 25–39.
  • Aldea, M., T. D. Frank, and E. H. Delucia. 2006. A method for quantitative analysis for spatially variable physiological processes across leaf surfaces. Photosynthesis Research 90: 161–172.
  • Aparicio, N., D. Villegas, and J. Casadesus. 2000. Spectral vegetation indices as non-destructive tools for determining durum wheat yield. Agronomy Journal 92: 83–91.
  • Arnall, D. B., W. Raun, J. Solie, M. Stone, G. Johnson, K. Girma, K. Freeman, R. Teal, and K. Martin. 2006. Relationship between coefficient of variation measured by spectral reflectance and plant density at early growth stages in winter wheat. Journal of Plant Nutrition 29: 1983–1997.
  • Balasubramanian, V., A. C. Morales, R. T. Cruz, and S. Abdulrahman. 1999. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems. Nutrient Cycling in Agroecosystems 53: 59–69.
  • Balasubramanian, V., A. Morales, R. Cruz, T. Thiyagarajan, R. Nagarajan, M. Babu, S. Abdulrachman, and L. Hai. 2000. Adaptation of the chlorophyll meter (SPAD) technology for real-time N management in rice: A review. International Rice Research Notes 25: 4–8.
  • Barnes, E. M., K. A. Sudduth, J. W. Hummel, S. M. Lesch, D. L. Corwin, C. Yang, C. S. T. Daughtry, and W. C. Bausch. 2003. Remote- and ground-based sensor techniques to map soil properties. Photogrammetric Engineering and Remote Sensing 69: 619–630.
  • Bawden, F. 1933. Infra-red photography and plant virus diseases. Nature 132: 168.
  • Berntsen, J. A., K. Thomsen, O. M. Schelde, L. Hansen, N. Knudsen, H. Broge, and R. Horfarter. 2006. Algorithms for sensor-based redistribution of nitrogen fertilizer in winter wheat. Precision Agriculture 7: 65–83.
  • Blazquez, C. H., and G. J. Edwards. 1986. Spectral reflectance of healthy and diseased watermelon leaves. Annals of Applied Biology 108: 243–249.
  • Cai, H., H. Cui, W. Song, and L. Gao. 2006. Preliminary study on photosynthetic pigment content and color feature of cucumber initial blooms. Transactions of the CSAE 22: 34–38.
  • Carlson, R. M., R. I. Cabrera, J. L. Paul, J. Quick, and R. Y. Evans. 1990. Rapid direct determination of ammonium and nitrate in soil and plant tissue extracts. Communications in Soil Science and Plant Analysis 21: 1519–1529.
  • Carter, G. A., and L. Estep. 2002. General spectral characteristics of leaf reflectance responses to plant stress and their manifestation at the landscape scale. In: From Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystems, ed. R. S. Muttiah, pp. 271–293. New York: Springer.
  • Casady, W. W., and H. L. Palm. 2002. Precision agriculture: remote sensing and ground truthing. MU Extension EQ 453. Columbia, MO: University of Missouri Extension.
  • CCRS. 2006. Passive vs active sensing [Online]. Available at: http://www.nrcan.gc.ca/node/14639 (Accessed 14 December 2014).
  • Chapman, S. C., and H. J. Barreto. 1997. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy Journal 89: 557–562.
  • Chappelle, E. W., M. S. Kim, and J. E. McMurtrey. 1992. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sensing of Environment 39: 239–247.
  • Chapron, M., M. Requena-Esteso, P. Boissard, and L. Assemat. 1999. A method for recognizing vegetal species from multispectral images. In: 2nd European Conference on Precision Agriculture, ed. J. V. Stafford, pp. 239–248. Sheffield, UK: Sheffield Academic Press.
  • Cometti, N. N., F. Jonathan, and B. Bugbee. 2003. Imaging lettuce growth: a comparison between ground coverage and PPF absorption by lettuce grown in hydroponics. Available at: http://www.niltoncometti.com.br/Trabalhos_congressos/2003/Imaging_Lettuce_Growth.pdf (Accessed 14 December 2014).
  • Curran, P. J., J. L. Dungan, B. A. Macler, and S. E. Plummer. 1991. The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration. Remote Sensing of Environment 35: 69–76.
  • Dana, W., and W. Ivo. 2008. Computer image analysis of seed shape and seed color of flax cultivar description. Computers and Electronics in Agriculture 61: 126–135.
  • Debaeke, P., P. Rouet, and E. Justes. 2006. Relationship between the normalized SPAD index and the nitrogen nutrition index: Application to durum wheat. Journal of Plant Nutrition 29: 75–92.
  • Diaz-Lago, J. E. 2003. Evaluation of components of partial resistance to oat crown rust using digital image analysis. Plant DiseasePlant Disease 87: 667–674.
  • Digitalglobe. 2002. QuickBird Imagery Products: Product Guide. Longmont, CO: DigitalGlobe Inc.
  • Ebertseder, T., U. Schmidhalter, R. Gutser, U. Hege, and S. Jungert. 2005. Evaluation of mapping and online nitrogen fertiliser application strategies in multiyear and multi-location static field trials for increasing nitrogen use efficiency of cereals. In: Precision Agriculture, ed. J. V. Stafford, pp. 327–336. Wageningen, the Netherlands: Wageningen Academic Publisher.
  • Ecarnot, M., F. Compan, and P. Roumet. 2013. Assessing leaf nitrogen content and leaf mass per unit area of wheat in the field throughout plant cycle with a portable spectrometer. Field Crops Research 140: 44–50.
  • Edrees, M., V. Lukas, and J. Křen. 2013. Determination of spectral characteristics of winter wheat canopy. MendelNet 1: 37–42.
  • Erickson, J. E., M. D. Keziah, L. A. Nelson, and C. T. Young. 1988. Variation of color of oil cooked Virginia type peanuts. Proceedings of the American Peanut Research and Education Society 20: 45.
  • Ferns, D. C., S. J. Zara, and J. Barber. 1984. Application of high resolution spectroradiometry to vegetation. Photogrammetric Engineering and Remote Sensing 50: 1725–1735.
  • Filella, I., L. Serrano, J. Serra, and J. Penuelas. 1995. Evaluating wheat nitrogen status with canopy reflectance indices and discriminate analysis. Crop Science 35: 1400–1405.
  • Flowers, M., R. Weisz, and R. Heiniger. 2003. Quantitative approaches for using color infrared photography for assessing in-season nitrogen status in winter wheat. Agronomy Journal 95: 1189–1200.
  • Fox, R. H., W. P. Piekielek, and K. M. MacNeal. 1994. Using a chlorophyll meter to predict nitrogen fertilizer needs of winter wheat. Communication in Soil Science and Plant Analysis 25: 171–181.
  • Freeman, K. W., W. R. Raun, G. V. Johnson, R. W. Mullen, M. L. Stone, and J. B. Solie. 2003. Late-season prediction of wheat grain yieldand grain protein. Communication in Soil Science and Plant Analysis 34: 1837–1852.
  • Furuya, S. 1987. Growth diagnosis of rice plants by means of leaf color. Japan Agricultural Research Quarterly 20: 147–153.
  • Gausman, H. W. 1974. Leaf reflectance of near-infrared. Photogrammetric Engineering and Remote Sensing 40: 183–191.
  • Georg, H., and F. J. Bockisch. 1992. Entwicklung eines Pflanzenunterscheidungssystems auf bildanalytischer Basis zur Bonitierung und zukuenftig zur direkten Steuerung bei der Unkrautbekaempfung [Development of a system to discriminate plants by use of image processing]. VDI/MEG Kolloquium Agrartechnik 14: 175–183.
  • Gerard, B., A. Buerkert, P. Hiernaux, and H. Marschner. 1997. Non-destructive measurement of plant growth and nitrogen status of peal millt with lowaltitude aerial photography. Soil Science and Plant Nutrition 43: 993–998.
  • Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58: 289–298.
  • Gobson, P. J. 2000. Introductory Remote Sensing Principles and Concepts. London: Routledge.
  • Godwin, R. J., G. A. Wood, J. C. Taylor, S. M. Knight, and J. P. Welsh. 2003. Precision farming of cereal crops: a review of a six year experiment to develop management guidelines. Biosystems Engineerinolg 84: 357–391.
  • Goel, P. K., S. O. Prasher, J. A. Landry, R. M. Patel, R. B. Bonnell, A. A. Viau, and J. R. Miller. 2003. Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn. Computers and Electronics in Agriculture 38: 99–124.
  • Goffart, J. P., and M. Olivier. 2004. Management of N fertilization of the potato crop using total N-advice software and in-season chlorophyll-meter measurements. In: Decision Support Systems in Potato Production: Bringing Models to Practice, eds. D. K. L. MacKerron, and A. J. Haverkort, pp. 63–83. Wageningen, the Netherlands: Wageningen Academic Publishers.
  • GopalaPillai, S., L. Tian, and J. Beal. 1998. Detection of nitrogen stress in corn using digital aerial imaging. Transactions of the ASAE 42: 863–970.
  • Govaerts, B., and N. Verhulst. 2010. The normalized difference vegetation index (NDVI) GreenSeekerTM handheld sensor: Toward the integrated evaluation of crop management. Part A - Concepts and case studies. Mexico City: CIMMYT.
  • Graeff, S., P. Judit, C. Wilhelm, and L. Hans-Peter. 2008. Evaluation of image analysis to determine the N-fertilizer demand of broccoli plants (Brassica oleracea convar. botrytis var. italica). Advances in Optical Technology 2008: 359760, 8pp.
  • Griffiths, G., and M. Wooding. 1996. Temporal Monitoring of Soil Moisture Using ERS–1 SAR Data. Hydrological Processes 10: 1127–1138.
  • Guan, J., and F. W. J. Nutter. 2002. Relationships between defoliation, leaf area index, canopy reflectance, and forage yield in the alfalfa-leaf spot pathosystem. Computers and Electronics in Agriculture 37: 97–112.
  • Havránková, J., V. Rataj, R. J. Godwin, and G. A. Wood, G. A. 2007. The evaluation of ground based remote sensing systems for canopy nitrogen management in winter wheat - economic efficiency. Agricultural Engineering International IX: CIOSTA 07 002.
  • Hawkins, J. A., J. E. Sawyer, D. W. Barker, and J. P. Lundvall. 2007. Using relative chlorophyll meter values to determine nitrogen application rates for corn. Agronomy Journal 99: 1034–1040.
  • Hemming, J., and T. Rath. 2000. Computer-vision based weed identification under field condition using controlled lighting. Journal of Agricultural Engineering Research 78: 233–243.
  • Henebry, G. M., K. M. D. Beurs, and A. A. Gitelson. 2005. Land surface phenologies of Uzbekistan and Turkmenistan between 1982 and 1999. Arid Ecosystems 11: 25–32.
  • Hoel, B. O. 2003. Chlorophyll meter readings in winter wheat: Cultivar differences and prediction of grain protein content. Acta Agriculturae Scandinavica, Section B – Plant Soil Science 52: 147–157.
  • Holland Scientific. 2004. Crop Circle ACS–210, Plant Canopy Reflectance Sensor, Instruction Manual. Available at: http://hollandscientific.com/wp-content/uploads/2011/05/Manual.pdf (Accessed 16 December 2014.
  • Huang, J. L., F. He, K. H. Cui, R. J. Buresh, B. Xu, W. H. Gong, and S. B. Peng. 2008. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Research 105: 70–80.
  • Hunt, E. R. J., C. S. T. Daughtry, J. E. McMurtrey, C. L. Walthall, J. A. Baker, J. C. Schroeder, and S. Liang. 2002. Comparison of remote sensing imagery for nitrogen management. In: Sixth International Conference on Precision Agriculture and Other Precision Resources Management, eds. P. C. Robert, R. H. Rust, and W. E. Larson. Madison, WI: ASA–CSSA–SSSA.
  • Hunt, E. R. J., C. S. T. Daughtry, C. L. Walthall, J. E. McMurtrey, and W. P. Dulaney. 2003. Agricultural remote sensing using radio–controlled model aircraft. In: Digital Imaging and Spectral Techniques, eds. T. VanToai, D. Major, M. McDonald, J. Schepers, and L. Tarpley, pp. 197-2025. Madison, WI: American Society of Agronomy.
  • Industries, N. 2005. Available at: http://nue.okstate.edu/Hand_Held/GS_HandHeld_Manual_rev_K[1].pdf (accessed on 17 February 2017).
  • IRRI. 1996. Use of leaf color chart (LCC) for N management in rice [Online]. Manila Philippines. Available at: http://beta.irri.org/ssnm/images/downloads/LCC%20handout%2026oct06.pdf (Accessed 16 December 2014).
  • Iwaya, K., and H. Yamamoto. 2005. The diagnosis of optimal harvesting time of rice using digital imaging. Journal of Agricultural Meteorology 60: 981–984.
  • Jia, L., X. Chen, F. Zhang, A. Buerkert, and V. Romheld. 2004. Use of digital camera to assess nitrogen status of winter wheat in the Northern China plain. Journal of Plant Nutrition 27: 441–450.
  • Jones, D. 2004. Remote detection of wheat streak mosaic and nitrogen deficiency and their effects on hard red winter wheat. Canyon, TX: West Texas and M University.
  • Kantety, R. V., E. Van Santen, F. M. Woods, and C. W. Woods. 1996. Chlorophyll meter predicts nitrogen status of tall fescue. Journal of Plant Nutrition 19: 881–899.
  • Karcher, D. E., and M. D. Rechardson. 2003. Quantifying turfgrass color using digital image analysis. Crop Science 43: 943–951.
  • Kawashima, S., and M. Nakatani. 1998. An algorithm for estimating chlorophyll content in leaves using a video camera. Annals of Botany 81: 49–54.
  • Kim, Y. S., J. F. Reid, A. Hansen, and Q. Zhang. 2000. On-field crop stress detection system using multi–spectral imaging sensor. Agricultural and Biosystems Engineering 1: 88–94.
  • Kipp, S., B. Mistele, and U. Schmidhalter. 2014. The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity. Computers and Electronics in Agriculture 100: 24–33.
  • Knipling, E. B. 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation for vegetation. Remote Sensing in Environment 1: 155–159.
  • Kogan, F., R. Stark, A. Gitelson, L. Jargalsaikhan, C. Dugrajav, and S. Tsooj. 2004. Derivation of pasture biomass in Mongolia from AVHRR-based vegetation health indices. International Journal of Remote Sensing 25: 2889–2896.
  • Kumar, R., and L. Silva. 1973. Light ray tracing through a leaf cross-section. Applied Optics 12: 2950–2954.
  • Kyaw, K. K. 2003. Plot-specific N fertilizer management for improved N–use efficiency in rice based systems of Bangladesh. Germany: Cuvillier.
  • Laudien, R., G. Bareth, and R. Doluschitz. 2004. Comparison of remote sensing based analysis of crop diseases by using high resolution multispectral and hyperspectral data - case study: Rhizoctonia solani in sugar beet. In: Proceedings of 12th International Conference on Geoinformatics–Geospatial Information Research: Bridging the Pacific and Atlantic, pp. 670-676. Gävle, Sweden: University of Gävle.
  • Leconte, R., F. Brissette, M. Galarneau, and J. Rousselle. 2004. Mapping nearsurface soil moisture with RADARSAT–1 synthetic aperture radar data. Water Resources Research 40: 1029–1038.
  • Lee, W., S. Searcy, and T. Kataoka. 1999. Assessing nitrogen stress in corn varieties of varying color. St. Joseph, MI: ASAE.
  • Li, Y. C., A. K. Alva, D. V. Calvert, and M. Zhang. 1998. A rapid nondestructive technique to predict leaf nitrogen status of grapefruit tree with various nitrogen fertilization practices. HortTechnology 8: 81–86.
  • Li, Y., D. Chen, C. Walker, and J. Angus. 2010. Estimating the nitrogen status of crops using a digital camera. Field Crops Research 118: 221–227.
  • Lillesand, T. M., and R. W. Keifer. 2000. Remote Sensing and Image Analysis. New York: John Wiley and Sons.
  • Lin, T. T., T. M. Lai, S. Chen, and D. S. Fon. 1994. Gray-scale and color machine vision systems for seedling detection. In: 5th International Conference. On Computers In Agriculture, 1994, pp. 105-110, Xp009048810. St Joseph, MI, USA.
  • Lina, S., J. Liangliang, C. Zhenling, C. Xinping, and Z. Fusuo. 2007. Using high–resolution satellite imaging to evaluate nitrogen status of winter wheat. Journal of Plant Nutrition 30: 1669–1680.
  • Link, A., and S. Reusch. 2006. Implementation of site–specific nitrogen application-status and development of the YARA N-Sensor. Nordic Association of Agricultural Scientists 390: 37–41.
  • Lukina, E. V., W. R. Raun, M. L. Stone, J. B. Solie, G. V. Johnson, H. L. Lees, J. M. Laruffa, and S. B. Phillips. 2000. Effect of row spacing, growth stage, and nitrogen rate on spectral irradiance in winter wheat. Journal of Plant Nutrition 23: 103–122.
  • Luna, A. M., E. Rico-García, L.-H. Alfredo, S.-Z. Genaro, O.-V. Rosalía, G.-G. Ramón, H.-R. Gilberto, and T. P. Irineo. 2010. Nitrogen determination on tomato (Lycopersicon esculentum Mill.) seedlings by color image analysis (RGB). African Journal of Biotechnology 9: 5326–5332.
  • Maiti, D., D. K. Das, T. Karak, and M. Banerjee. 2004. Management of nitrogen through the use of leaf color chart (LCC) and soil plant analysis development (SPAD) or chlorophyll meter in rice under irrigated ecosystem. Scientific World Journal 4: 838–846.
  • McVeagh, P.J., I. J. Yule, and J. Mackenzie, J. 2012. A comparison of the performance of VIS/NIR sensors used to inform nitrogen fertilization strategies. American Society of Agricultural and Biological Engineers Annual International Meeting.
  • Minolta Camera Co. 1989. Chlorophyll Meter SPAD–502 Instructional Manual. Osaka, Japan: Minolta.
  • Minotti, P. L., D. E. Halseth, and J. B. Sieczka. 1994. Field chlorophyll measurements to assess the nitrogen status of potato varieties. HortScience, 29: 1497–1500.
  • Mirik, M. Jr., G. J. M. Kassymzhanova-Mirik, N. C. Elliott, V. Catana, D. B. Jones, and R. Bowling. 2006. Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat. Computers and Electronics in Agriculture 51: 86–98.
  • Moran, M. S., Y. Inoue, and E. M. Barns. 1997. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment 61: 319–346.
  • Morris, D. K. 2006. Methods for controlling crop inputs for Northern Ireland conditions. MSc by Research, Cranfield University, Silsoe, United Kingdom.
  • Mulla, D. J. 2013. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering 114: 358–371.
  • Mullen, R. W., K. W. Freeman, W. R. Raun, G. V. Johnson, M. L. Stone, and J. B. Solie. 2003. Identifying an in–season response index and the potential to increase wheat yield with nitrogen. Agronomy Journal 95: 347–351.
  • Muñoz-Huerta, R. F., R. G. Guevara-Gonzalez, L. M. Contreras-Medina, I. Torres-Pacheco, J. Prado-Olivarez, and R. V. Ocampo-Velazquez. 2013. A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors 13: 10823–10843.
  • Murdock, L., D. Call, and J. James. 1998. Comparison and use of chlorophyll meters on wheat (reflectance vs. transmittance/absorbance). Lexington, KY: University of Kentucky College of Agriculture.
  • Murdock, L., S. Jones, C. Bowley, P. Needham, J. James, and P. Howe. 1997. Using a chlorophyll meter to make nitrogen recommendations on wheat. Lexington, KY: Kentucky Cooperative Extension Service.
  • Netto, A., E. Campostrini, J. G. De Oliveira, and O. K. Yamanishi. 2002. Portable chlorophyll eter for the quantification of photosynthetic pigments, nitrogen and the possible use for assessment of the photochemical process in Carica papaya. Brazilian Journal of Plant Physiology 14: 203–210.
  • Nilsson, H. E. 1995. Remote sensing and image analysis in plant pathology. Canadian Journal of Plant Pathology 17: 154–166.
  • Noh, H., Q. Zhang, S. Han, B. Shin, and D. Reum. 2005. Dynamic calibration and image segmentation methods for multispectral imaging crop nitrogen deficiency sensors. American Society of Agricultural Engineers 48: 393–401.
  • Noh, H. K., and Q. Zhang. 2003. Multispectral image sensor for detection of nitrogen deficiency in corn by using an empirical line method. ASAE Annual International Meeting. Las Vegas, Nevada, USA.
  • Nusz, J. B. S. 2009. Remote sensing to improve nitrogen management in subsurface drip irrigated cotton. Master's thesis, Texas Tech University Lubbock, Texas, USA.
  • Osborne, S., J. S. Schepers, D. Francis, and M. R. Schlemmer. 2002. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agronomy Journal 94: 1215–1221.
  • Pagola, M., R. Ortiz, I. Irogoyen, H. Bustince, E. Barrenechea, P. Aparicio-Trejo, C. Lamsfus, and B. Lasa. 2009. New method to asses barley nitrogen nutrition status base don image color analysis. Comparison with SPAD–502. Computers and Electronics in Agriculture 65: 213–218.
  • Peng, S., V. Felipe, V. Garcia, C. Rebecca, C. Laza, and K. G. Cassman. 1993. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration. Agronomy Journal 85: 987–990.
  • Peryea, F. J., and R. Kammereck. 1997. Use of Minolta SPAD-502 chlorophyll meter to quantify the effectiveness of mid-summer trunk injection of iron on chlorotic pear trees. Journal of Plant Nutrition 20: 1457–1463.
  • Pinter, P., K. Sudduth, J. Schepers, T. Schmugge, P. Starks, and D. Upchurch. 2003. Sensor development and radiometric correction for agricultural applications. Photogrammetric Engineering and Remote Sensing of Environment 69: 705–718.
  • Plant, R. E., D. S. Munk, B. R. Roberts, R. L. Vargas, D. W. Rains, R. L. Travis, and R. B. Hutmacher. 2000. Relationships between remotely sensed reflectance data and cotton growth and yield. Transactions of the ASAE 43: 535–546.
  • Qin, Z., and M. Zhang. 2005. Detection of rice sheath blight for in–season disease management using multispectral remote sensing. International Journal of Applied Earth Observation and Geoinformation 7: 115–128.
  • Quilter, M. C., and V. J. Anderson. 2000. Low altitude/large scale aerial photographs: A tool for range and resource managers. Rangelands 22: 13–17.
  • Ramesh, K., B. Chandrasekaran, T. N. Balasubramanian, U. Bangarusamy, R. Sivasamy, and N. Sankaran. 2002. Chlorophyll dynamics in rice (Oryza sativa) before and after flowering based on SPAD (chlorophyll) meter monitoring and its relationwith grain yield. Journal of Agronomy and Crop Science 188: 102–105.
  • Ramirez, B. M. 2010. Monitoring nitrogen levels in the cotton canopy using real -time active-illumination spectral sensing. Master thesis, University of Tennessee, Knoxville, TN, USA.
  • Raun, W. R., J. B. Solie, G. V. Johnson, M. L. Stone, R. W. Mullen, K. W. Freeman, W. E. Thomason, and E. V. Lukina. 2002. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal 94: 815–820.
  • Reeves, D. W. 1993. Determination of wheat nitrogen status with a hand-held chlorophyll meter: Influence of management practices. Journal of Plant Nutrition 16: 781–791.
  • Reusch, S., A. Link, and J. Lammel. 2002. Tractor-mounted multispectral scanner for remote field investigation. In: 6th International Conference on Precision Agriculture and Other Precision Resources. Madison, WI: ASA-CSSA-SSSA.
  • Richardson, M., D. Karcher, and L. Purcell. 2001. Quantifying turfgrass cover using digital image analysis. Crop Science 41: 1884–1888.
  • Riedell, W. E., S. L., Osborne, and L. S. Hesler. 2004. Insect pest and disease detection using remote sensing techniques. 7th International Conference on Precision Agriculture. Minneapolis, MN USA.
  • Robert, P. C. 2002. Precision agriculture: A challenge for crop nutrition management. Plant and Soil 247: 143–149.
  • Rostami, M., A. R. Koocheki, M. N. Mahallati, and M. Kafi. 2008. Evaluation of chlorophyll meter (SPAD) data for prediction of nitrogen status in corn (Zea mays L.). American-Eurasian Journal of Agriculture Science 3: 79–85.
  • Sala, O. E., R. B. Jackson, H. Mooney, and R. H. Howarth. 2000. Methods in ecosystem science. Berling: Springer-Verlag.
  • Samborski, S., M, N. Tremblay, and E. Fallon. 2009. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agronomy Journal 101: 800–816.
  • Scharf, P. C., and J. A. Lory. 2002. Calibrating corn color from aerial photographs to predict sidedress nitrogen need. Agronomy Journal 94: 397–404.
  • Scharf, P. C., D. K. Shannon, H. L. Palm, K. A. Sudduth, S. T. Drummond, N. R. Kitchen, L. J. Mueller, V. C. Hubbard, and L. F. Oliveira. 2011. Sensor-based nitrogen applications out-performed producer-chosen rates for corn in on-farm demonstrations. Agronomy Journal 103: 1683–1691.
  • Schepers, J. 2005. Active sensor for corn.
  • Schepers, J. S., D. D. Francis, and V. Vigil. 1992. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Communications in Soil Science and Plant Analysis 23: 2173–2187.
  • Schröder, J. J., J. J. Neeteson, O. Oenema, and P. C. Struik. 2000. Does the crop or the soil indicate how to save nitrogen in maize production. Reviewing the state of the art. Field Crops Research 66: 277–278.
  • Scotford, I. M., and P. C. H. Miller. 2005. Vehicle mounted sensors for estimating tiller density and leaf area index (LAI) of winter wheat. Crop variability and resulting management effects. In: 5th European Conference on Precision Agriculture, pp. 201-208. Uppsala, Sweden.
  • Serbin, S. P., D. N. Dillaway, E. L. Kruger, and P. A. Towsend. 2012. Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature. Journal of Experimental Botany 63: 489–499.
  • Serrano, L., I. Filella, and J. Penuelas. 2000. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Science 40: 723–730.
  • Shapiro, C. A., J. S. Schepers, D. D. Francis, and J. F. Shanahan. 2006. Using a chlorophyll meter to improve N management. NebGuide G1632. Lincoln, NE: Coop. Ext. Serv., Univ. of Nebraska.
  • Shearman, V., R. Sylvester-Bradley, R. Scott, and M. Foulkes. 2005. Physiological processes associated with wheat yield progress in the UK. Crop Science 45: 175–185.
  • Shou, L., J. Liangliang, C. Zhenling, C. Xinping, and Z. Fusuo. 2007. Using high-resolution satellite imaging to evaluate nitrogen status of winter wheat. Journal of Plant Nutrition 30: 1669–1680.
  • Steddom, K., M. Mcmullen, B. Schatz, and C. M. Rush. 2004. Assessing foliar disease of wheat image analysis. Bushland, TX: Cooperative Research, Education & Extension Team..
  • Stone, M. L., J. B. Solie, W. R. Raun, R. W. Whitney, S. L. Taylor, and J. D. Ringer. 1996. Use of spectral radiance for correcting in–season fertilizer nitrogen deficiencies in winter wheat. Transactions of the ASAE 39: 1623–1631.
  • Su, C. H., C. C. Fu, Y. C. Chang, G. R. Nair, J. L. Ye, L. M. Chu, and W. T. Wu. 2008. Simultaneous estimation of chlorophyll a and lipid contents in microalgae by three color analysis. Biotechnology Bioeng. 99: 1034–1039.
  • Sui, R., J. B. Wilkerson, W. E. Hart, L. R. Wilhelm, and D. D. Howard. 2005. Multi-spectral sensor for detection of nitrogen status in cotton. Applied Engineering in Agriculture 21: 167–172.
  • Suzuki, T., H. Murase, and N. Honamin. 1999. Non-destructive growth measurement cabbage pug seedlings population by image information. Journal of Agriculture Mechanical Association 61: 45–51.
  • Swain, D. K., and S. Sandip. 2010. Development of SPAD values of medium- and long-duration rice variety for site-specific nitrogen management. Journal of Agronomy 9: 38–44.
  • Takebe, M., and T. Yoneyama. 1989. Measurements of leaf color scores and its implication to nitrogen nutrition of rice plants. Japan Agricultural Research Quarterly 23: 86–93.
  • Thai, C. N., M. D. Evans, X. Deng, and A. F. Theisen. 1998. Visible and NIR imaging of bush beans grown under different nitrogen treatments. An ASAE meeting paper. Paper no. 98-3074. St. Joseph, MI: ASAE.
  • Thind, H., and R. Gupta. 2010. Need based nitrogen management using the chlorophyll meter and leaf color chart in rice and wheat in South Asia: a review. Nutrient Cycling in Agroecosystems 88: 361–380.
  • Thorp, K. R., and L. F. Tian. 2004. A review on remote sensing of weed in agriculture. Precision Agriculture 5: 477–508.
  • Tillet, N. P., T. Hague, and S. J. Miles. 2001. A field assessment of a potential method for weed and crop mapping geometry. Computers and Electronics in Agriculture 32: 229–246.
  • Trotter, T. F., P. S. Frazier, M. G. Trotter, and D. W. Lamb. 2008. Objective biomass assessment using an active plant sensor (CropCircle) – preliminary experiences on a variety of agricultural landscapes. Ninth International Conference on Precision Agriculture. Abstract 239.
  • Truppel, I., B. Herold, and M. Geyer. 1998. Einfluß der Beleuchtung bei der Qualita¨tsbeurteilung von Früchten mittels Computerbildanalyse [Influence of light on quality assessment of fruits by use of image processing]. Gartenbauwissenschaft 63: 54–63.
  • Turner, F. T., and M. F. Jund. 1991. Chlorophyll meter to predict nitrogen topdress requirement for semidwarf rice. Australian Journal of Experimental Agriculture 34: 1001–1005.
  • Turner, F. T., and M. F. Jund. 1994. Assessing the nitrogen requirements of rice crops with a chlorophyll meter method. Australian Journal of Experimental Agriculture 34: 1001–1005.
  • Turner, A. V., S. B. Martin, and J. J. Camberato. 2004. Image analysis to quantify foliage damage to turfgrass. Available at: http://virtual.clemson.edu/groups/turfornamental/sctop/turfsec/plpanem/plpanem6.htm [Accessed 16 December 2014].
  • Uddling, J., J. Gelang-Alfredsson, K. Piikki, and H. Pleijel. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research 91: 37–46.
  • Varel, V. H. 1997. Use of urease inhibitors to control nitrogen loss from livestock waste. Bioresource Technology 62: 11–17.
  • Villa, M. S., E. A. Guertal, and C. Wood. 2000. Tomato leaf chlorophyll meter readings as affected by variety, nitrogen form, and night–time nutrient solution strength. Journal of Plant Nutrition 23: 649–661.
  • Villa, M., C. W. Wood, and E. A. Guertal. 2002. Tomato leaf chlorophyll meter readings as affected by variety, nitrogen form, and night-time nutrient solution strength. Journal of Plant Nutrition 25: 2129–2142.
  • Weiss, M., F. Baret, R. B. Myiieni, A. Pragnhre, and Y. Knyazikhin. 2000. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomice 20: 3–22.
  • Wells, B. R., and F. T. Turner. 1984. Nitrogen use in flooded rice soils. In: Nitrogen in Crop Production, pp. 349–362. Madison, WI: ASA.
  • Williams, J. D., N. R. Kitchen, P. C. Scharf, and W. E. Stevens. 2010. Within–field nitrogen response in corn related to aerial photograph color. Precision Agriculture 11: 291–305.
  • Wood, G. A., J. P. Welsh, R. J. Godwin, J. C. Taylor, M. Earl, and S. M. Knoght. 2003. Real-time measures of canopy size as a basis for spatially varying nitrogen applications to winter wheat son at different seed rates. Biosystems Engineering 84: 513–531.
  • Wu, J., D. Wang, C. J. Rosen, and Bauer, M. E. 2007. Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and Quick Bird Satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research 101: 96–103.
  • Wu, F. B., L. H. Wu, and F. H. Xu. 1998. Chlorophyll meter to predict nitrogen side dress requirements for short-season cotton (Gossypium hirsutum). Field Crops Research 56: 309–314.
  • Xu, G., H. Mao, and P. Li. 2002. Extracting color features of leaf color images. Transactions of the CSAE 18: 150–154.
  • Yadav, S. P., Y. Ibaraki, and S. D. Gupta. 2010. Estimation of the chlorophyll content of micro propagated potato plants using RGB based image analysis. Plant Cell Tissue and Organ Culture 100: 183–188.
  • Yang, C., and G. Anderson. 2000. Mapping grain sorghum yield variability using airborne digital videography. Precision Agriculture 2: 2–23.
  • Yang, Z., M. N. Rao, N. C. Elliott, S. D. Kindler, and T. W. Popham. 2005. Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Computers and Electronics in Agriculture 47: 121–135.
  • Yara. 2006. variable rate nitrogen around the clock. Available at: http://www.tec5usa.com/wp-content/uploads/2015/12/PI_YARA_NSensor_ALS_t5U.pdf (Accessed 22 February 2017).
  • Yoder, B. J., and R. E. Pettigrew-Crosby. 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sensing in the Environment 53: 199–211.
  • Zebarth, B. J., H. Rees, N. Tremblay, P. Fournier, and B. Leblon. 2003. Mapping spatial variation in potato nitrogen status using the N Sensor. Acta Horticulture 627: 267–273.
  • Zhang, M., Z. Qin, X. Liu, and S. L. Ustin. 2003. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation 4: 295–310.
  • Zhang, N., M. Wang, and N. Wang. 2002. Precision agriculture: A worldwide overview. Computers and Electronics in Agriculture 36: 113–132.
  • Zhao, D., K. R. Reddy, V. G. Kakani, J. J. Read, and S. Koti. 2005. Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of fieldgrown cotton. Agronomy Journal 97: 89–98.
  • Zillman, E., S. Graeff, J. Link, W. D. Batchelor, and W. Claupein. 2006. Assessment of cereal nitrogen requirements derived by optical onthe-go sensors on heterogeneous soils. Agronomy Journal 98: 682–690.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.