190
Views
2
CrossRef citations to date
0
Altmetric
Articles

Aluminum tolerance and micronutrient accumulation in cereal species contrasting in iron efficiency

, &
Pages 1152-1164 | Received 28 May 2015, Accepted 04 Feb 2016, Published online: 08 May 2017

References

  • Ali, S., P. Bai, F. Zeng, S. Cai, I. H. Shamsi, B. Qiu, F. Wu, and G. Zhang. 2011. The ecotoxicological and interactive effects of chromium and aluminum on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in Al tolerance. Environmental and Experimental Botany 70: 185–191.
  • Alloway, B. J. 2008. Micronutrients and crop production: An introduction. In Micronutrient Deficiency in Global Crop Production, ed. B. J. Alloway, pp. 1–39. BV, Dordrecht: Springer Science and Business Media.
  • Aniol, A., and J. P. Gustafson. 1984. Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Canadian Journal of Genetics and Cytology 26: 701–705.
  • Bhuja, P., K. McLachlan, J. Stephens, and G. Taylor. 2004. Accumulation of 1,3-beta-d-glucans, in response to aluminum and cytosolic calcium in Triticum aestivum. Plant and Cell Physiology 45: 543–549.
  • Bian, M., M. Zhou, D. Sun, and C. Li. 2013. Molecular approaches unravel the mechanism of acid soil tolerance in plants. The Crop Journal 1: 91–104.
  • Briat, J. F. 2008. Iron dynamics in plants. In Advances in Botanical Research. 46, eds. J. C. Kader, and M. Delseny, pp. 137–180. Amsterdam, The Netherlands: Elsevier Academic Press.
  • Bityutskii, N. P. 2007. Iron-deficiency responses in cereal seedlings. Journal of Plant Nutrition 30: 1483–1498.
  • Bityutskii, N. P., and E. N. Davidovskaya. 2008. Scutellum acidifying capacity is an indicator of cereal tolerance to carbonate chlorosis. Doklady Akademii Nauk 420 (5): 711–714.
  • Bityutskii, N. P., E. N. Davydovskaya, E. A. Malyuga, and K. L. Yakkonen. 2004. Mechanisms underlying iron and zinc transport to axis organs in grain during early seedling development of maize. Journal of Plant Nutrition 9: 1525–1541.
  • Bityutskii, N. P., S. V. Magnitsky, L. P. Korobeynikova, E. I. Lukina, A. N. Soloviova, V. G., Patsevitch, I. N. Lapshina, and G. V. Matveeva. 2002. Distribution of iron, manganese, and zinc in mature grain and their mobilization during germination and early seedling development. Journal of Plant Nutrition 25 (3): 635–653.
  • Bona, L., R. J. Wright, V. C. Baligar, and J. Matuz. 1993. Screening wheat and other small grains for acid soil tolerance. Landsccape Urban Planning 27: 175–178.
  • Clark, R. B., H. A. Pier, D. Knudsen, and J. W. Maranville. 1981. Effect of trace element deficiencies and excesses on mineral nutrients in sorghum. Journal of Plant Nutrition 3: 357–374.
  • Clarkson, D. T. 1965. The effect of aluminum and some trivalent metal cations on cell division in the root apices of Alliun cepa. Annals of Botany 29: 309–315.
  • Dai, H., J. Zhao, I. M. Ahmed, F. Cao, Z.-H. Chen, G. Zhang, C. Li, and F. Wu. 2014. Differences in physiological features associated with aluminum tolerance in Tibetan wild and cultivated barleys. Plant Physiology and Biochemistry 75: 36–44.
  • Darko, E., H. Ambrus, E. Stefanovits, B. Anyai, J. Fodor, F. Bakos, and B. Barnabas. 2004. Aluminum toxicity. Al tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Science 166: 583–591.
  • Doncheva, S., M. Amenos, C. Poschenrieder, and J. Barcelo. 2005. Root cell patterning: A primary target for aluminum toxicity in maize. Journal of Experimental Botany 56: 1213–1220.
  • Ezaki, B., K. Jayaram, A. Higashi, and K. Takahashi. 2013. A combination of five mechanisms confers a high tolerance for aluminum to a wild species of Poaceae, Andropogon virginicus L. Environmental and Experimental Botany 93: 35–44.
  • Foy, C. D., and A. L. Fleming. 1982. Aluminum tolerance of two wheat cultivars related to nitrate reductase activities. Journal of Plant Nutrition 5: 1313–1333.
  • Furlani, R. R., and R. B. Clark. 1981. Screening sorghum for aluminum tolerance in nutrient solution. Agronomy Journal 73: 587–594.
  • Garzon, T., B. Gunsé, A. R. Moreno, A. D. Tomos, J. Barceló, and C. Porschenrieder. 2011. Aluminum-induced alteration of ion homeostasis in root tip vacuoles of two maize varieties differing in Al tolerance. Plant Science 180: 709–715.
  • Godbold, D. L., G. Jentschke, and P. Marschner. 1995. Solution pH modifies the response of Norway spruce seedlings to aluminum. Plant and Soil 171: 175–178.
  • Gourley, C. J. P., D. L. Allan, and M. P. M. P. Russelle. 1994. Plant nutrient efficiency: A comparison of definitions and suggested improvement. Plant and Soil 158: 29–37.
  • Graham, R. D., and C. R., James. 2003. Trace element uptake and distribution in plants. Journal of Plant Nutrition 133: 1502–1505.
  • Guo, T. R., G. P. Zhang, W. Y. Lu, H. P. Wu, F. B. Wu, J. X. Chen, and M. X. Zhou. 2003. Effect of Al on dry matter accumulation and Al and nutrients in barleys differing in Al tolerance. The Journal of Plant Nutrition and Fertilizer Science 9: 324–330.
  • Guo, T. R., G. P. Zhang, M. X. Zhou, F. B. Wu, and J. X. Chen. 2007. Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars. Pedosphere 17: 505–512.
  • He, H.-L., L.-F. He, M.-H. Gu, and X.-F. Li. 2012. Nitric oxide improves aluminum tolerance by regulating hormonal equilibrium in the root apices of rye and wheat. Plant Science 183: 123–130.
  • Kerkeb, L., and E. L. Connolly. 2006. Iron transport and metabolism. In Genetic Engineering, ed. J. K. Setlow, pp. 119–140. New York: Springer Science + Business Media.
  • Kikui, S., T. Sasaki, M. Maekawa, A. Miyao, H. Hirochika, H. Matsumoto, and Y. Yamamoto. 2005. Physiological and genetic analyses of aluminum tolerance in rice, focusing on root growth during germination. Journal of Inorganic Biochemistry 99: 1837–1844.
  • Klimashevsky, E. L., M. L. Bernatskaya, and Y. A. Markova. 1968. Osobennosty rostovih reacciy pogloshenia P32, ATP-asnoy i phosphatasnoy aktivnosti, soderzhania nukleinovih kislot v rasteniah sortov goroha, kontrastno ustoychivih k toxichnosty Al3+ v sone korney. Trudy Phisiologov i biochimickov… 3: 48–54 (in Russian).
  • Ligaba, A., L. V. Kochian, and M. A. Piñeros. 2009. Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlines aluminum resistance in wheat. The Plant Journal 60: 411–423.
  • Lindsay, W. L. 1995. Chemical reactions in soils that affect iron availability to plants. A quantitative approach. In Iron Nutrition in Soils and Plants, ed. J. Abadia, pp. 7–14. Dordrecht: Kluwer Academic Publishers.
  • Liu, Q., L. S. He, Z. Y. Wang, X. Z. Cheng, and S. J. Zheng. 2007. Differential aluminum resistance and organic acid anion secretion in triticale. Communications in Soil Science and Plant Analysis 38: 1991–2004.
  • Loskutov, I. G., and H. W. Rines. 2011. Avena L. In Wild Crop Relatives: Genomic and Breeding Resources. 1. Cereals., ed. C. Kole, pp. 109–184. Heidelberg, Berlin, New York: Springer.
  • Ma, J. F. 2000. Role of organic acids in detoxication of Al in higher plants. The Plant Cell 41: 383–390.
  • Ma, J. F., R. F. Shen, S. Nagao, and E. Tanimoto. 2004. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant and Cell Physiology 45: 583–589.
  • Marschner, H. 1995. Mineral Nutrition of Higher Plants, 2nd ed. London: Academic Press.
  • Moussavi-Nik, M., J. N. Pearson, G. J. Hollamby, and R. D. Graham. 1998. Dynamics of nutrient remobilization during germination and early seedling development in wheat. Journal of Plant Nutrition 21: 421–434.
  • Moustakas, M., E. P. Eleftheriou, and G. Ouzounidou. 1997. Short-term effects of aluminum at alkaline pH on the structure and function of the photosynthetic apparatus. Photosynthetica 34: 169–177.
  • Ohwaki, Y, and K. Sugahara. 1997. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietnum L.). Plant and Soil 189: 49–55.
  • Oleksyn, J., P. Karolewski, M. J. Giertych, A. Werner, M. G. Tjoelker, and P. B. Reich. 1996. Altered root growth and plant chemistry of Pinus sylvestris seedlings subjected to aluminum in nutrient solution. Trees 10: 135–144.
  • Olivares, E., E. Pena, E. Marcano, J. Mostacero, G. Aguiar, M. Benitez, and E. Rengifo. 2009. Aluminum accumulation and its relationship with mineral plant nutrients in 12 pteridophyres from Venezuela. Environmental and Experimental Botany 65: 132–141.
  • Panda, S. K., F. Baluska, and H. Matsumoto. 2009. Aluminum stress signaling in plants. Plant Signaling and Behavior 4 (7): 592–597.
  • Panda, S. K., L. B. Singha, and M. H. Khan. 2003. Does aluminum phytotoxicity induce oxidative stress in green gram (Vigna radiate)? Bulgarian Journal of Plant Physiology 29: 77–86.
  • Prabagar, S., M. J. Hodson, and D. E. Evans. 2011. Silicon amelioration of aluminum toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst.). Environmental and Experimental Botany 70: 266–276.
  • Raman, H., and P. Gustafson. 2011. Molecular breeding of cereals for aluminum. In Root Genomics, eds. A. C. De Oliveira, and R. K. Varshney, pp. 51–287. Berlin, Heidelberg: Springer-Verlag.
  • Römheld, V., and H. Marschner. 1986. Mobilization of iron in the rhizosphere of different plant species. Advanced Plant Nutrition 2: 155–204.
  • Römheld, V., and M. Nikolic. 2006. Iron. In Handbook of Plant Nutrition, eds. A. V. Barker, and D. J. Pilbeam, pp. 329–350. Boca Ration: CRC Press.
  • Rout, G. R., S. Samantaray, and P. Das. 2001. Aluminum toxicity in plants: A review. Agronomie 21: 3–21.
  • Schmidt, W. 1999. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytologist 141: 1–26.
  • Shchiparev, S. M. 1997. Scutellum and its role in germination. In Embryology of Flowering Plants. Terminology and Concepts: Seed, ed. T. B. Batygina, pp. 681–685. St. Petersburg, Russia: World and Family (in Russian).
  • Shchiparev, S. M., and Ph. V. Miachin. 1990. The study of ferricyanide reduction activity of scutellum in maize. Vestnik Leningradskogo Universiteta 4 (3): 89–93 (in Russian).
  • Silva, J. D. O. C., E. A. S. Paiva, L. V. Modolo, C. C. N. Nascentes, and M. G. C. Frana. 2013. Removal of root apices enables study of direct toxic effects of aluminum on rice (Oryza sativa L.) leaf cells. Environmental and Experimental Botany 95: 41–49.
  • Silva, S., G. Pinto, M. C. Dias, C. M. Correia, J. Moutinho-Pereira, O. Pinto-Carnide, and C. Santos. 2012. Aluminum long-term stress differently affects photosynthesis in rye genotypes. Plant Physiology and Biochemistry 54: 105–112.
  • Silva, S., O. Pinto-Carnide, P. Martins-Lopes, M. Matos, H. Guedes-Pinto, and C. Santos. 2010. Differential aluminum changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat. Environmental and Experimental Botany 68: 91–98.
  • Singh, D. 2012. Genetic control of aluminum tolerance on okra (Abelmoschus esculentus L.). Scientia Horticulturae 138: 134–137.
  • Sivaguru, M., and K. Paliwal. 1993. Differential aluminum tolerance in some tropical rice cultivars – II: Mechanism of aluminum tolerance. Journal of Plant Nutrition 16: 1717–1732.
  • Tan, N. K. T., W. G. Keltjens, and G. R. Findenegg. 1993. Aluminum toxicity in sorghum genotypes as influenced by solution acidity. Soil Science and Plant Nutrition 39: 291–298.
  • Uexküll, H. R., and E. Mutert. 1995. Global extent, development and economic impact of acid soils. Plant and Soil 171: 1–15.
  • Wang, Y. S., and Z. M. Yang. 2005. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant and Cell Physiology 46: 1915–1923.
  • Watanabe, T., and M. Osaki. 2002. Mechanisms of adaptation to high aluminum condition in native plant species growing in acid soils: A review. Communications in Soil Science and Plant Analysis 33 (7, 8): 1247–1260.
  • Yang, J. L., Y. L. Ya, J. Z. Yue, S. Z. Shan, R. W. Yun, W. Ping, and J. Z. Shao. 2008. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiology 146: 602–611.
  • Yang, L.-T., H.-X. Jiang, N. Tang, and L.-S. Chen. 2011. Mechanisms of aluminum-tolerance in two species of citrus: Secretion of organic acid and immobilization of aluminum by phosphorus in roots. Plant Science 180: 521–530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.