174
Views
7
CrossRef citations to date
0
Altmetric
Articles

Cu induced changes of ultrastructure and bioaccumulation in the leaf of Moso bamboo (Phyllostachys pubescens)

, , , , , , , , & show all
Pages 288-296 | Received 16 Aug 2014, Accepted 21 Nov 2016, Published online: 11 Jan 2018

References

  • Ahsan, N., D.-G. Lee, S.-H. Lee, K. Y. Kang, J. J. Lee, P. J. Kim, H.-S. Yoon, J.-S. Kim, and B.-H. Lee. 2007. Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–93.
  • Alaoui-Sossé, B., P. Genet, F. Vinit-Dunand, M.-L. Toussaint, D. Epron, and P.-M. Badot. 2004. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Science 166:1213–8.
  • Ansari, M. K. A., H. B. Shao, S. Umar, A. Ahmad, S. H. Ansari, M. Iqbal, and G. Owens. 2013. Screening Indian mustard genotypes for phytoremediating arsenic‐contaminated soils. CLEAN–Soil, Air, Water 41:195–201.
  • Arru, L., S. Rognoni, M. Baroncini, P. M. Bonatti, and P. Perata. 2004. Copper localization in Cannabis sativa L. grown in a copper-rich solution. Euphytica 140:33–8.
  • Benimeli, C. S., A. Medina, C. M. Navarro, R. B. Medina, M. J. Amoroso, and M. I. Gómez. 2010. Bioaccumulation of copper by Zea mays: Impact on root, shoot and leaf growth. Water, Air, & Soil Pollution 210:365–70.
  • Chen, H., W. Hong, B. Lan, Y. S. Zheng, and D. J. He. 1998. Study on biomass and productivity of Phyllostachys heterocycala cv. pubescens forest in the north of Fujian. Scientia Silvae Sinicae 34:60–4.
  • Chen, J. Z., D. L. Peng, M. Shafi, S. Li, J. S. Wu, Z. Q. Ye, W. B. Yan, K. P. Lu, and D. Liu. 2014. Effect of copper toxicity on root morphology, ultrastructure, and copper accumulation in Moso bamboo (Phyllostachys pubescens). Z. Naturforsch 69c:399–406.
  • Chen, X., X. Zhang, Y. Zhang, T. Booth, and X. He. 2009. Changes of carbon stocks in bamboo stands in China during 100 years. Forest Ecology and Management 258:1489–96.
  • Collin, B., E. Doelsch, C. Keller, P. Cazevieille, M. Tella, P. Chaurand, F. Panfili, J.-L. Hazemann, and J.-D. Meunier. 2014. Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations. Environmental Pollution 187:22–30.
  • Hegazy, A. K., N. T. Abdel-Ghani, and G. A. El-Chaghaby. 2011. Phytoremediation of industrial wastewater potentiality by Typha domingensis. International Journal of Environmental Science & Technology 8 (3):639–48.
  • Islam, E., X. E. Yang, and T. Q. Li. 2007. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials 147 (3):806–16.
  • Jiang, L., X. Yang, W. Shi, Z. Ye, and Z. He. 2005. Copper uptake and tolerance in two contrasting ecotypes of Elsholtzia argyi. Journal of Plant Nutrition 27:2067–83.
  • Jiang, L. Y., X. Yang, and Z. He. 2004. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere 55:1179–87.
  • Küpper, H., F. J. Zhao, and S. P. McGrath. 1999. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiology 119:305–12.
  • Kellaf, N., and M. Zardoui. 2010. Growth, photosynthesis and respiratory response to copper in Lemna minor: A potential use of duckweed in biomonitoring. Iranian Journal of Environmental Health Science & Engineering 7:299–306.
  • Lasat, M. M. 2002. Phytoextraction of toxic metals. Journal of Environmental Quality 31:109–20.
  • Li, X., X. F. Bao, and F. S. Wang. 2007. Study on biomass and productivity of Phyllostachys heterocycala cv. Pubescens forest in the south of Jiangxi. Anhui Forestry Science and Technology Z1:9–11.
  • Maksymiec, W., R. Russa, T. Urbanik-Sypniewska, and T. Baszyński. 1994. Effect of excess Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages. Physiologia Plantarum 91:715–21.
  • Marschner, H. 1995. Functions of mineral nutrients: Macronutrients. Mineral nutrition of Higher Plants 2:379–96.
  • Mirlean, N., A. Roisenberg, and J. O. Chies. 2007. Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environmental Pollution 149:10–7.
  • Mokhtar, H., N. Morad, and F. F. A. Fizri. 2011. Hyperaccumulation of copper by two species of aquatic plants. International conference on environment science and engineering IPCBEE, 115–8.
  • Oh, K., T. Li, H. Y. Cheng, X. Y. He, and S. Yonemochi. 2013. Study on tolerance and accumulation potential of biofuel crops for phytoremediation of heavy metals. International Journal of Environmental Science and Development 2:152–6.
  • Pätsikkä, E., M. Kairavuo, F. Šeršen, E.-M. Aro, and E. Tyystjärvi. 2002. Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiology 129:1359–67.
  • Panou-Filotheou, H., and A. M. Bosabalidis. 2004. Root structural aspects associated with copper toxicity in oregano (Origanum vulgare subsp. hirtum). Plant Science 166:1497–504.
  • Peng, H.-Y., X.-E. Yang, L.-Y. Jiang, and Z.-L. He. 2005. Copper phytoavailability and uptake by Elsholtzia splendens from contaminated soil as affected by soil amendments. Journal of Environmental Science and Health 40:839–56.
  • Poschenrieder, C., and J. Barceló. 1999. Water relations in heavy metal stressed plants. In Heavy Metal Stress in Plants, 207–29. Berlin, Heidelberg: Springer.
  • Robson, A. D., and D. J. Reuter. 1981. Diagnosis of copper deficiency and toxicity. In Copper in Soils and Plants, eds. J. F. Loeragan, A. D. Robson, and R. D. Graham, 287–312. New York, USA: Academic Press.
  • Sánchez-Pardo, B., M. Fernández-Pascual, and P. Zornoza. 2014. Copper microlocalisation and changes in leaf morphology, chloroplast ultrastructure and antioxidative response in white lupin and soybean grown in copper excess. Journal of Plant Research 127:119–29.
  • Sagardoy, R., S. Vázquez, I. D. Florez Sarasa, A. Albacete, M. Ribas Carbó, J. Flexas, J. Abadía, and F. Morales. 2010. Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. New Phytologist 187:145–58.
  • Schiavon, M., L. Zhang, S. E. Abdel-Ghany, M. Pilon, M. Malagoli, and E. A. Pilon-Smits. 2007. Variation in copper tolerance in Arabidopsis thaliana accessions Columbia, Landsberg erecta and Wassilewskija. Physiologia Plantarum 129:342–50.
  • Shimokawa, T., M. Ishida, S. Yoshida, and M. Nojiri. 2009. Effects of growth stage on enzymatic saccharification and simultaneous saccharification and fermentation of bamboo shoots for bioethanol production. Bioresource Technology 100:6651–4.
  • Wang, H., and G. Zhong. 2011. Effect of organic ligands on accumulation of copper in hyperaccumulator and nonaccumulator Commelina communis. Biological Trace Element Research 143:489–99.
  • Wang, S.-H., Z.-M. Yang, H. Yang, B. Lu, S.-Q. Li, and Y.-P. Lu. 2004. Copper-induced stress and antioxidative responses in roots of Brassica juncea L. Botanical Bulletin of Academia Sinica 45:203–12.
  • Weryszko Chmielewska, E., and M. Chwil. 2005. Lead-induced histological and ultrastructural changes in the leaves of soybean (Glycine max (L.) Merr.). Soil Science and Plant Nutrition 51:203–12.
  • Xi, X., M. Liu, Y. Huang, Y. Chen, Y. Zhang, and Y. Chen. 2010. Response of flue-cured tobacco plants to different concentration of lead or cadmium, Bioinformatics and Biomedical Engineering (iCBBE). 2010 4th International Conference on IEEE, 1–4.
  • Xu, Y., M. H. Wong, J. L. Yang, Z. Q. Ye, P. K. Jiang, and S. J. Zheng. 2011. Dynamics of carbon accumulation during the fast growth period of bamboo plant. The Botanical Review 77:287–95.
  • Yruela, I. 2009. Copper in plants: Acquisition, transport and interactions. Functional Plant Biology 36:409–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.