532
Views
23
CrossRef citations to date
0
Altmetric
Articles

Effect of Plant Growth Promoting Rhizobacteria on Fe Acquisition in Peach (Prunus Persica L) Under Calcareous Soil Conditions

, , , , , , & show all
Pages 2141-2150 | Received 10 Apr 2017, Accepted 12 Apr 2018, Published online: 02 Oct 2018

References

  • Assimakopoulou, A., C. Holevas, and K. Fasseas. 2011. Relative susceptibility of some prunus rootstocks in hydroponics to iron deficiency. Journal of Plant Nutrition 34 (7):1014–1033.
  • Bienfait, H., R. Bino, A. V D Bliek, J. Duivenvoorden, and J. Fontaine. 1983. Characterization of ferric reducing activity in roots of fe‐deficient Phaseolus vulgaris. Physiologia Plantarum 59 (2):196–202.
  • Bienfait, H., H. Lubberding, P. Heutink, L. Lindner, J. Visser, R. Kaptein, and K. Dijkstra. 1989. Rhizosphere acidification by iron deficient bean plants: the role of trace amounts of divalent metal ions a study on roots of intact plants with the use of 11C-and 31P-NMR. Plant Physiology 90 (1):359–364.
  • Bohórquez, J., F. Romera, and E. Alcántara. 2001. Effect of Fe3+, Zn2+ and Mn2+ on ferric reducing capacity and regreening process of the peach rootstock nemaguard (Prunus persica (L.) batsch). Plant and Soil 237:157–163.
  • Brittenham, G. 1994. New advances in iron metabolism, iron deficiency, and iron overload. Current Opinion in Hematology 1 (2):101–106.
  • Del Campillo, M., and J. Torrent. 1992. A rapid acid-oxalate extraction procedure for the determination of active fe-oxide forms in calcareous soils. Zeitschrift Für Pflanzenernährung Und Bodenkunde 155 (5):437.
  • Garcia-Lopez, A. M., and A. Delgado. 2016. Effect of Bacillus subtilis on phosphorus uptake by cucumber as affected by iron oxides and the solubility of the phosphorus source. Agricultural and Food Science 25:216–224.
  • Glick, B. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41(2):109–117.
  • Gogorcena, Y., J. Abadía, and A. Abadía. 2000. Induction of in vivo root ferric chelate reductase activity in fruit tree rootstock. Journal of Plant Nutrition 23 (1):9–21.
  • Jones, D., P. Darah, and L. Kochian. 1996. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant and Soil 180 (1):57–66.
  • Karakurt, H., and R. Aslantas. 2010. Effects of some plant growth promoting rhizobacteria [PGPR] strains on plant growth and leaf nutrient content of apple. Journal of Fruit and Ornamental Plant Research 1:101–110.
  • Karlidag, H., A. Esitken, M. Turan, and F. Sahin. 2007. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Scientia Horticulturae 114 (1):16–20.
  • Kobayashi, T., and N. K. Nishizawa. 2012. Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology 63:131–152.
  • Kosegarten, H. U., B. Hoffmann, and K. Mengel. 1999. Apoplastic pH and Fe(3+) reduction in intact sunflower leaves. Plant Physiology 121 (4):1069–1079.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42 (3):421–428.
  • Marschner, H. 2011. Marschner's mineral nutrition of higher plants. Amseterdam, The Netherlands: Academic Press.
  • Mengel, K. 1994. Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant and Soil 165 (2):275–283.
  • Mengel, K., and G. Geurtzen. 1988. Relationship between iron chlorosis and alkalinity in zea mays. Physiologia Plantarum 72 (3):460–465.
  • Mengel, K., and E. A. Kirkby. 2001. Principles of plant nutrition. Netherlands: Springer, Kluwer Academic Publishers.
  • Mertens, D. 2005a. AOAC Official Method 922.02. In Plants Preparation of Laboratuary Sample. Official Methods of Analysis, ed. by W. Horwitz and G.W. Latimer, 18th ed., 1–2. Gaithersburg, MD: AOAC-International Suite 500, 481.
  • Mertens, D. 2005b. AOAC Official Method 975.03. In Metal in Plants and Pet Foods. Official Methods of Analysis, ed. by W. Horwitz and G.W. Latimer, 18th ed., 3–4. Gaithersburg, MD: AOAC-International Suite 500, 481.
  • Miller, G., I. J. Huang, G. Welkie, and J. Pushnik. 1995. Function of iron in plants with special emphasis on chloroplasts and photosynthetic activity. In Iron nutrition in soils and plants., ed. J. Abadia, 19–28. Berlin, Germany: Springer.
  • Molassiotis, A. N., G. C. Diamantidis, I. N. Therios, V. Tsirakoglou, and K. N. Dimassi. 2005. Oxidative stress, antioxidant activity and fe (III)-chelate reductase activity of five prunus rootstocks explants in response to fe deficiency. Plant Growth Regulation 46 (1):69–78.
  • Murgia, I., D. Tarantino, C. Vannini, M. Bracale, S. Carravieri, and C. Soave. 2004. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat‐induced photooxidative stress and to nitric oxide‐induced cell death. The Plant Journal 38 (6):940–953.
  • Orhan, E., A. Esitken, S. Ercisli, M. Turan, and F. Sahin. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scientia Horticulturae 111 (1):38–43.
  • Pii, Y., L. Marastoni, C. Springeth, M. C. Fontanella, G. M. Beone, S. Cesco, and T. Mimmo. 2016. Modulation of Fe acquisition process by Azospirillum brasilense in cucumber plants. Environmental and Experimental Botany 130:216–25.
  • Pii, Y., A. Penn, R. Terzano, C. Crecchio, T. Mimmo, and S. Cesco. 2015. Plant-microorganism-soil interactions influence the fe availability in the rhizosphere of cucumber plants. Plant Physiology and Biochemistry 87:45–52.
  • Plänker, R. 1991. Die bedeutung des apoplasten-pH-wertes fuer die eisenchlorose. Untersuchungen an Helianthus annuus L, Giessen, Hesse: Ph.D. Thesis.
  • Poonnachit, U., and R. Darnell. 2004. Effect of ammonium and nitrate on ferric chelate reductase and nitrate reductase in vaccinium species. Annals of Botany 93 (4):399–405.
  • Rombolà, A. D., and M. Tagliavini. 2006. Iron nutrition of fruit tree crops. In Iron nutrition in plants and rhizospheric microorganisms, eds. L.L. Barton and J. Abadia, 61–83. Berlin, Germany: Springer.
  • Romera, F., E. Alcántara, and M. De La Guardia. 1991. Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. Plant and Soil 130:121–5.
  • Sanz, M., J. Pascual, and J. Machín. 1997. Prognosis and correction of iron chlorosis in peach trees: Influence on fruit quality. Journal of Plant Nutrition 20 (11):1567–1572.
  • Scagliola, M., Y. Pii, T. Mimmo, S. Cesco, P. Ricciuti, and C. Crecchio. 2016. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiology and Biochemistry 107:187–196.
  • Schmidt, W. 1999. Mechanisms and regulation of reduction‐based iron uptake in plants. New Phytologist 141 (1):1–26.
  • Sharma, A., B. Johri, A. Sharma, and B. Glick. 2003. Plant growth-promoting bacterium Pseudomonas sp. strain GRP 3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biology and Biochemistry 35 (7):887–894.
  • Shi, Y., D. H. Byrne, D. W. Reed, and R. H. Loeppert. 1993. Iron chlorosis development and growth response of peach rootstocks to bicarbonate. Journal of Plant Nutrition 16 (6):1039–1046.
  • Tagliavini, M., and A. D. Rombolà. 2001. Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy 15 (2):71–92.
  • Tagliavini, M., D. Scudellari, B. Marangoni, and M. Toselli. 1995. Acid-spray regreening of kiwifruit leaves affected by lime-induced iron chlorosis. In Iron nutrition in soils and plants, ed. J. Abadia, 191–195. Berlin, Germany: Springer.
  • Takkar, P., and N. Kaur. 1984. HCl method for Fe2+ estimation to resolve iron chlorosis in plants. Journal of Plant Nutrition 7 (1–5):81–90.
  • Toselli, M., B. Marangoni, and M. Tagliavini. 2000. Iron content in vegetative and reproductive organs of nectarine trees in calcareous soils during the development of chlorosis. European Journal of Agronomy 13 (4):279–286.
  • Waters, B. M., D. G. Blevins, and D. J. Eide. 2002. Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiology 129 (1):85–94.
  • Zhang, H., Y. Sun, X. Xie, M. S. Kim, S. E. Dowd, and P. W. Paré. 2009. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. The Plant Journal: For Cell and Molecular Biology 58 (4):568–577.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.