573
Views
29
CrossRef citations to date
0
Altmetric
Original Article

The role of phosphorus sources on root diameter, root length and root dry matter of barley (Hordeum vulgare L.)

, &
Pages 1-15 | Received 13 Aug 2017, Accepted 21 Mar 2018, Published online: 26 Dec 2018

References

  • Abenavoli, M. R., M. Leone, F. Sunseri, M. Bacchi, and A. Sorgon. 2016. Root phenotyping for drought tolerance in bean landraces from Calabria (Italy). Journal of Agronomy and Crop Science 202 (1):1–12.
  • Alguacil, M. M., E. Torrecillas, J. Kohler, and A. Roldán. 2011. A molecular approach to ascertain the success of “in situ AM fungi inoculation in the revegetation of a semiarid, degraded land.” The Science of the Total Environment 409 (15):2874–80.
  • Arzani, A., and M. Ashraf. 2016. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critical Reviews in Plant Sciences 35 (3):146–89.
  • Babana, A. H., A. Kassogué, A. H. Dicko, K. Maîga, F. Samaké, D. Traoré, R. Fané, and F. A. Faradji. 2016. Development of a biological phosphate fertilizer to improve wheat (Triticum aestivum L.) production in Mali. Procedia Engineering 138:319–24.
  • Bokhorst, S., P. Kardol, P. J. Bellingham, R. M. Kooyman, S. J. Richardson, S. Schmidt, and D. A. Wardle. 2017. Responses of communities of soil organisms and plants to soil aging at two contrasting long-term chronosequences. Soil Biology & Biochemistry 106:69–79.
  • Bolan, N. S. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil 134 (2):189–207.
  • Chen, Y. P., P. D. Rekha, A. B. Arun, F. T. Shen, W. A. Lai, and C. C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34 (1):33–41.
  • Ciereszko, I., A. Szczygła, and E. Żebrowska. 2011a. Phosphate deficiency affects acid phosphatase activity and growth of two wheat varieties. Journal of Plant Nutritio 34 (6):815–29.
  • Ciereszko, I., E. Żebrowska, and M. Ruminowicz. 2011b. Acid phosphatases and growth of barley (Hordeum vulgare L.) cultivars under diverse phosphorus nutrition. Acta Physiologiae Plantarum 33 (6):2355–68.
  • Colombi, T., S. Braun, T. Keller, and A. Walter. 2017. Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Science of the Total Environment 574:1283–93.
  • Cordell, D., J. O. Drangert, and S. White. 2009. The story of phosphorus: global food security and food for thought. Global Environmental Change 19 (2):292–305.
  • Fageria, N. K., and A. Moreira. 2011. The role of mineral nutrition on root growth of crop plants. Advances in Agronomy 110:251–331.
  • Feng, R., G. Liao, J. Guo, R. Wang, Y. Xu, Y. Ding, L. Mo, Z. Fan, and N. Li. 2016. Responses of root growth and antioxidative systems of paddy rice exposed to antimony and selenium. Environmental and Experimental Botany 122:29–38.
  • Fernandes, A. M., R. P. Soratto, and J. R. Gonsales. 2014. Root morphology and phosphorus uptake by potato cultivars grown under deficient and sufficient phosphorus supply. Scientia Horticulturae 180:190–8.
  • Gahoonia, T. S., D. Care, and N. E. Nielsen. 1997. Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant and Soil 191 (2):181–8.
  • Gahoonia, T. S., N. E. Nielsen, P. A. Joshi, and A. Jahoor. 2001. A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake. Plant and Soil 235:211–19.
  • Gao, Y., A. Duan, X. Qiu, Z. Liu, J. Sun, J. Zhang, and H. Wang. 2010. Distribution of roots and root length density in a maize/soybean strip intercropping system. Agricultural Water Management 98 (1):199–212.
  • Gul, S., and J. K. Whalen. 2016. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology & Biochemistry 103:1–15.
  • Gyaneshwar, P., G. Naresh Kumar, L. J. Parekh, and P. S. Poole. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245:83–93.
  • Hao, D. C., G. B. Ge, and L. Yang. 2008. Bacterial diversity of taxus rhizosphere: culture-independent and culture-dependent approaches. FEMS Microbiology Letters 284 (2):204–12.
  • Herdler, S., K. Kreuzer, S. Scheu, and M. Bonkowski. 2008. Interactions between arbuscular mycorrhizal fungi (Glomus intraradices, glomeromycota) and amoebae (Acanthamoeba castellanii, protozoa) in the rhizosphere of rice (Oryza sativa). Soil Biology & Biochemistry 40 (3):660–8.
  • Hermans, C., J. P. Hammond, P. J. White, and N. Verbruggen. 2006. How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Sciences 11 (12):610–17.
  • Hewitt, E. J. 1966. Sand and water culture methods used in the study of plant nutrition. Technical Communications. No. 22, 2nd ed. revised., London: Commonwealth Agricultural Bureau.
  • Hinsinger, P., A. G. Bengough, D. Vetterlein, and I. M. Young. 2009. Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and Soil 321:117–52.
  • Hu, J., X. Lin, J. Wang, X. Cui, J. Dai, H. Chu, and J. Zhang. 2010. Arbuscular mycorrhizal fungus enhances P-acquisition of wheat (Triticum aestivum L.) in a sandy loam soil with long-term inorganic fertilization regime. Applied Microbiology and Biotechnology 88 (3):781–7.
  • Imtiaz, R. M., M. L. Hamid, T. Shahzad, T. Almeelbi, I. M. I. Ismail, and M. Oves. 2016. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research 183:26–41.
  • Jha, S. K., Y. Gao, H. Liu, Z. Huang, G. Wang, Y. Liang, and A. Duan. 2017. Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China. Agricultural water management 182:139–50.
  • Lambers, H., M. W. Shane, M. D. Cramer, S. J. Pearse, and E. J. Veneklaas. 2006. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Annals of Botany 98 (4):693–713.
  • Li, H.-G., J.-B. Shen, F.-S. Zhang, and H. Lambers. 2010. Localized application of soil organic matter shifts distribution of cluster roots of white lupin in the soil profile due to localized release of phosphorus. Annals of Botany 105 (4):585–93.
  • Liu, Y., G. H. Mi, F. J. Chen, J. H. Zhang, and F. S. Zhang. 2004. Rhizosphere effect and root growth of two maizes (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Science 167 (2):217–23.
  • Lynch, J. P. 2011. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiology 156 (3):1041–9.
  • Lynch, J. P., and K. M. Brown. 2008. Root strategies for phosphorus acquisition. In The ecophysiology of Plant-Phosphorus interactions, ed. P. White and J. Hammond, 83–116. Dordrecht, the Netherlands: Springer Science.
  • Ma, Z., J. P. Lynch, D. G. Bielenberg, and K. M. Brown. 2001. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant, Cell and Environment 24 (4):459–67.
  • Magadlela, A., C. Beukes, F. Venter, E. Steenkamp, and A. Valentine. 2017. Does P deficiency affect nodule bacterial composition and N source utilization in a legume from nutrient-poor mediterranean-type ecosystems ? Soil Biology & Biochemistry 104:164–74.
  • Maji, D., P. Misra, S. Singh, and A. Kalra. 2017. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Applied Soil Ecology 110:97–108.
  • Manschadi, A. M., H.-P. Kaul, J. Vollmann, J. Eitzinger, and W. Wenzel. 2014. Reprint of developing phosphorus efficient crop varieties an interdisciplinary research framework. Field Crops Research 165:49–60.
  • Marschner, P. 2012. Mineral nutrition of higher plants. 3rd ed. London: Academic Press.
  • Marschner, P., Z. Solaiman, and Z. Rengel. 2007. Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biology & Biochemistry 39 (1):87–98.
  • Meyer, G., E. K. Bünemann, E. Frossard, M. Maurhofer, P. Mader, and A. Oberson. 2017. Gross phosphorus fluxes in a calcareous soil inoculated with Pseudomonas protegens CHA0 revealed by 33P isotopic dilution. Soil Biology & Biochemistry 104:81–94.
  • Mirzaei Heydari, M. 2013. The role of bio-inoculants on phosphorus relations of barley. Ph.D. Thesis, Bangor University, Wales, UK.
  • Mollier, A., and S. Pellerin. 1999. Maize root system growth and development as influenced by phosphorus deficiency. Journal of Experimental Botany 50 (333):487–97.
  • Mundaa, S., B. G. Shivakumar, D. S. Rana, B. Gangaiah, K. M. Manjaiah, A. Dass, J. Layek, and K. Lakshman. 2016. Inorganic phosphorus along with biofertilizers improves profitability and sustainability in soybean (Glycine max)– potato (Solanum tuberosum) cropping system. Journal of the Saudi Society of Agricultural Sciences 17 (2):4–10.
  • Patel, D. K., P. Murawala, G. Archana, and G. Naresh Kumar. 2011. Repression of mineral phosphate solubilizing phenotype in the presence of weak organic acids in plant growth promoting fluorescent pseudomonads. Bioresource Technology 102 (3):3055–61.
  • Pellerin, S., A. Mollier, C. Morel, and C. Plenchette. 2007. Effect of incorporation of brassica napus L. residues in soils on mycorrhizal fungus colonisation of roots and phosphorus uptake by maize (Zea mays L.). The European Journal of Agronomy 26 (2):113–20.
  • Postma, J. A., and J. P. Lynch. 2011. Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Annals of Botany 107 (5):829–41.
  • Ramaekers, L., R. Remans, I. M. Rao, M. W. Blair, and J. Vanderleyden. 2010. Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research 117 (2–3):169–76.
  • Rasmussen, I. S., D. B. Dresboll, and K. Thorup-Kristensen. 2015. Winter wheat cultivars and nitrogen (N) fertilization effects on root growth, N uptake efficiency and N use efficiency. The European Journal of Agronomy 68:38–49.
  • Richardson, A. E. 1994. Soil microorganisms and phosphorus availability. In Soil biota: Management in sustainable farming systems, ed. C. E. Pankhurst, B. E. Doube, V. V. S. R. Gupta, and P. R. Grace, 50–62. Melbourne: CSIRO Publications.
  • Richardson, A. E., J. P. Lynch, P. R. Ryan, E. Delhaize, F. A. Smith, S. E. Smith, P. R. Harvey, M. H. Ryan, E. J. Veneklaas, H. Lambers., et al. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil 349:121–56.
  • Rodriguez-Caballero, G., F. Caravaca, A. J. Fernandez-González, M. M. Alguacil, M. Fernandez-Lopez, and A. Roldán. 2017. Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Science of the Total Environment 584–585:838–48.
  • Romer, W., and G. Schilling. 1986. Phosphorus requirements of the wheat plant in various stages of its life cycle. Plant and Soil 91 (2):221–9.
  • Shen, J., C. Li, G. Mi, L. Li, L. Yuan, R. Jiang, and F. Zhang. 2013. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. Journal of Experimental Botany 64 (5):1181–92.
  • Shen, J., L. Yuan, J. Zhang, H. Li, Z. Bai, X. Chen, W. Zhang, and F. Zhang. 2011. Phosphorus dynamics: from soil to plant. Plant Physiology 156 (3):997–1005.
  • Shi, L., T. Shi, M. R. Broadley, P. J. White, Y. Long, J. Meng, F. Xu, and J. P. Hammond. 2013. High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Annals of Botany 112 (2):381–9.
  • Sihi, D., B. Dari, D. K. Sharma, H. Pathak, L. Nain, and O. M. Sharma. 2017. Evaluation of soil health in organic vs. conventional farming of basmati rice in North India. Journal of Plant Nutrition and Soil Science 180 (3):389–406.
  • Syers, J. K., A. E. Johnston, and D. Curtin. 2008. Efficiency of soil and fertilizer phosphorus use reconciling changing concepts of soil phosphorus behaviour with agronomic information. Rome, Italy: FAO.
  • Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418 (6898):671–7.
  • Toro, M., R. Azcon, and J. Barea. 1997. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Applied and Environmental Microbiology 63:4408–12.
  • Trabelsi, D., A. Cherni, A. Ben Zineb, S. F. Dhane, and R. Mhamdi. 2017. Fertilization of Phaseolus vulgaris with the Tunisian rock phosphate affects richness and structure of rhizosphere bacterial communities. Applied Soil Ecology 114:1–8.
  • Trevors, J. T. 1996. Sterilization and inhibition of microbial activity in soil. The Journal of Microbiological Methods 26 (1–2):53–9.
  • Vance, C. P., C. Uhde-Stone, and D. L. Allan. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157 (3):423–47.
  • Vierheilig, H., H. Gagnon, D. Strack, and W. Maier. 2000. Accumulation of cyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza 9 (5):291–1993.
  • Walker, T. S., E. Bais, E. Grotewold, and J. M. Vivanco. 2003. Root exudation and rhizosphere biology. Plant Physiology 132 (1):44–51.
  • Wamberg, C., S. Christensen, I. Jakobsen, A. K. Mu¨ Ller, and S. J. Sørensen. 2003. The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biology & Biochemistry 35 (10):1349–57.
  • Wang, Y., T. Krogstad, N. Clarke, A. F. Ogaard, and J. L. Clarke. 2017. Impact of phosphorus on rhizosphere organic anions of wheat at different growth stages under field conditions. AoB PLANTS 9 (2):1–8.
  • Wang, B. L., X. Y. Tang, L. Y. Cheng, A. Z. Zhang, W. H. Zhang, F. S. Zhang, J. Q. Liu, Y. Cao, D. L. Allan, C. P. Vance, and J. B. Shen. 2010. Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. New Phytologist 187 (4):1112–23.
  • Wissuwa, M. 2003. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiology 133 (4):1947–58.
  • Xia, X., X. Fan, J. Wei, H. Feng, H. Qu, D. Xie, H. Qu, D. Xie, A. J. Miller, and G. Xu. 2014. Rice nitrate transporter OsNPF2 4 functions in low-affinity acquisition and long-distance transport. Journal of Experimental Botany, 66:317–31.
  • Żebrowska, E., M. Milewska, and I. Ciereszko. 2017. Mechanisms of oat (Avena sativa L.) acclimation to phosphate deficiency. PeerJ 5:e3989.
  • Zhang, G. Y., L. P. Zhang, M. F. Wei, Z. Liu, Q. L. Fan, Q. R. Shen, and G. H. Xu. 2011. Effect of arbuscular mycorrhizal fungi, organic fertilizer and soil sterilization on maize growth. Acta Ecologica Sinica 31:192–6.
  • Zhu, J., and J. P. Lynch. 2004. The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings. Functional Plant Biology 31 (10):949–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.