207
Views
17
CrossRef citations to date
0
Altmetric
Articles

Oxidant related biochemical traits are significant indices in triticale grain yield under drought stress condition

, , &
Pages 111-126 | Received 18 Oct 2017, Accepted 15 Feb 2018, Published online: 11 Jan 2019

References

  • Acar, O., I. Türkan, and F. Özdemir. 2001. Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties. Acta Physiologiae Plantarum 23 (3):351–6. doi:10.1007/s11738-001-0043-8.
  • Ahmed, I. M., F. Cao, Y. Han, U. Aktari Nadira, G. Zhang, and F. Wu. 2013a. Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress. Food Chemistry 141 (3):2743–50. doi:10.1016/j.foodchem.2013.05.101.
  • Ahmed, I. M., H. Dai, W. Zheng, F. Cao, G. Zhang, D. Sun, and F. Wu. 2013b. Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry 63:49–60. doi:10.1016/j.plaphy.2012.11.004.
  • Akbarian, A., A. Arzani, M. Salehi, and M. Salehi. 2011. Evaluation of triticale genotypes for terminal drought tolerance using physiological traits. Indian Journal of Agricultural Sciences 81 (12):1110.
  • Alexieva, V., I. Sergiev, S. Mapelli, and E. Karanov. 2001. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment 24 (12):1337–44. doi:10.1046/j.1365-3040.2001.00778.x.
  • Ali, M. B., E. J. Hahn, and K. Y. Paek. 2005. Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated phalaenopsis plantlet. Environmental and Experimental Botany 54 (2):109–20. doi:10.1016/j.envexpbot.2004.06.005.
  • Aniol, A., and J. P. Gustafson. 1984. Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Canadian Journal of Genetics and Cytology 26 (6):701–5. doi:10.1139/g84-111.
  • Araus, J. L., G. A. Slafer, M. P. Reynolds, and C. Royo. 2002. Plant breeding and drought in C3 cereals: What should we breed for? Annals of Botany 89 (7):925–40. doi:10.1093/aob/mcf049.
  • Arough, Y. K., R. S. Sharifi, M. Sedghi, and M. Barmaki. 2016. Effect of zinc and bio fertilizers on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in triticale under salinity condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44 (1):116. doi:10.15835/nbha44110224.
  • Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27 (1):84–93. doi:10.1016/j.biotechadv.2008.09.003.
  • Bailly, C., A. Benamar, F. Corbineau, and D. Come. 1996. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiologia Plantarum 97 (1):104–10. doi:10.1111/j.1399-3054.1996.tb00485.x.
  • Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39 (1):205–7. doi:10.1007/BF00018060.
  • Beauchamp, C., and I. Fridovich. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44 (1):276–87. doi:10.1016/0003-2697(71)90370-8.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1-2):248–54. doi:10.1016/0003-2697(76)90527-3.
  • Chance, B., and A. C. Maehly. 1954. Assay of catalases and peroxidases. Methods of Biochemical Analysis 10:357–64.
  • Chen, C. H., and W. Bushuk. 1970. Nature of proteins in triticale and its parental species: I. Solubility characteristics and amino acid composition of endosperm proteins. Canadian Journal of Plant Science 50 (1):9–14. doi:10.4141/cjps70-002.
  • Clarke, S., S. Roques, R. Weightman, and D. Kindred. 2016. Modern triticale crops for increased yields, reduced inputs, increased profitability and reduced greenhouse gas emissions from UK cereal production. AHDB Cereals & Oilseeds Project Report (556), 65p.
  • DaCosta, M., and B. Huang. 2007. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. Journal of the American Society for Horticultural Science 132 (3):319–26.
  • Dhindsa, R. S., P. Plumb-Dhindsa, and T. Thorpe. 1981. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32 (1):93–101. doi:10.1093/jxb/32.1.93.
  • Filek, M., Łabanowska, M. J. Kościelniak, J. Biesaga, ‐Kościelniak, M. Kurdziel, I. Szarejko, and H. Hartikainen. 2015. Characterization of barley leaf tolerance to drought stress by chlorophyll fluorescence and electron paramagnetic resonance studies. Journal of Agronomy and Crop Science 201 (3):228–40. doi:10.1111/jac.12063.
  • Fox, P. N., B. Skovmand, B. K. Thompson, H. J. Braun, and R. Cormier. 1990. Yield and adaptation of hexaploid spring triticale. Euphytica 47 (1):57–64. doi:10.1007/BF00040364.
  • Foyer, C. H., M. Lelandais, and K. J. Kunert. 1994. Photooxidative stress in plants. Physiologia Plantarum 92 (4):696–717. doi:10.1111/j.1399-3054.1994.tb03042.x.
  • Gechev, T. S., I. Gadjev, F. Van Breusegem, D. Inzé, S. Dukiandjiev, V. Toneva, and I. Minkov. 2002. Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences 59 (4):708–14. doi:10.1007/s00018-002-8459-x.
  • Gill, S. S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48 (12):909–30. doi:10.1016/j.plaphy.2010.08.016.
  • Gorji, A. H., Z. Zonoori, M. Zolnoori, and A. Jamasbi. 2011. Inheritance of antioxidant activity of triticale under drought stress. Asian Journal of Plant Sciences 10 (3):220. doi:10.3923/ajps.2011.220.226.
  • Grzesiak, S., M. T. Grzesiak, W. Filek, and J. Stabryła. 2003. Evaluation of physiological screening tests for breeding drought resistant triticale (x triticosecale wittmack). Acta Physiologiae Plantarum 25 (1):29–37. doi:10.1007/s11738-003-0033-0.
  • Guo, P., M. Baum, S. Grando, S. Ceccarelli, G. Bai, R. Li, M. Von Korff, R. K. Varshney, A. Graner, and J. Valkoun. 2009. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany 60 (12):3531–44. doi:10.1093/jxb/erp194.
  • Guo, Z. F., W. Z. Ou, S. Y. Lu, and Q. Zhong. 2006. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry 44 (11–12):828–36. doi:10.1016/j.plaphy.2006.10.024.
  • Habibi, G. 2013. Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agriculturae Slovenica 101 (1):31–9.
  • Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125 (1):189–98.
  • Hossain, M. A., S. Bhattacharjee, A. Saed-Moucheshi, P. Qian, H. Y. Li, D. J. Burritt, M. Fujita, and L. S. P. Tran. 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Frontiers in Plant Science 6:420–32.
  • Jiang, Y., and B. Huang. 2001. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science 41 (2):436–42. doi:10.2135/cropsci2001.412436x.
  • Khanna-Chopra, R., and D. S. Selote. 2007. Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environmental and Experimental Botany 60 (2):276–83. doi:10.1016/j.envexpbot.2006.11.004.
  • Krüger, H. and J. Gert. 2002. Separately and simultaneously induced dark chilling and drought stress effects on photosynthesis, proline accumulation and antioxidant metabolism in soybean. Journal of Plant Physiology 159 (10):1077–86. doi:10.1078/0176-1617-00745.
  • Kuleung, C., P. S. Baenziger, and I. Dweikat. 2004. Transferability of SSR markers among wheat, rye, and triticale. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 108 (6):1147–50.
  • Lichtenthaler, H. K., and C. Buschmann. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry Unit F4.3, Supplement 1, pp. 1–8.
  • Lin, C. C., and C. H. Kao. 2000. Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regulation 30 (2):151–5. doi:10.1023/A:1006345126589.
  • Lonbani, M., and A. Arzani. 2011. Morpho-physiological traits associated with terminal drought-stress tolerance in triticale and wheat. Agronomy Research 9 (1-2):315329.
  • Mirzaee, M., A. Moieni, and F. Ghanati. 2013. Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars. Journal of Agricultural Science and Technology 15 (3):593–602.
  • Müntzing, A. 1979. Triticale: Results and Problems. In Advances in plant productions, ed. A. Müntzing, 520. Berlin, Germany: Parey Publication.
  • Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22 (5):867–80. doi:10.1093/oxfordjournals.pcp.a076232.
  • Passioura, J. B. 2012. Phenotyping for drought tolerance in grain crops: When is it useful to breeders? Functional Plant Biology 39 (11):851–9. doi:10.1071/FP12079.
  • Pérez‐López, U., A. Robredo, M. Lacuesta, C. Sgherri, A. Muñoz‐Rueda, F. Navari‐Izzo, and A. Mena‐Petite. 2009. The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiologia Plantarum 135 (1):29–42. doi:10.1111/j.1399-3054.2008.01174.x.
  • Pointillart, A., A. Fourdin, and N. Fontaine. 1987. Importance of cereal phytase activity for phytate phosphorus utilization by growing pigs fed diets containing triticale or corn. The Journal of Nutrition 117 (5):907–13.
  • Saed-Moucheshi, A., H. Pakniyat, H. Pirasteh-Anosheh, and M. M. Azooz. 2014. Role of ROS as Signaling. In Oxidative damage to plants: Antioxidant networks and signaling, ed. P. Ahmad, 585–626. New York, USA: Elsevier Publication.
  • Saed-Moucheshi, A., A. Shekoofa, and M. Pessarakli. 2014. Reactive oxygen species (ROS) generation and detoxifying in plants. Journal of Plant Nutrition 37 (10):1573–85. doi:10.1080/01904167.2013.868483.
  • Sankhla, N., A. Upadhyaya, T. D. Davis, and D. Sankhla. 1992. Hydrogen peroxide-scavenging enzymes and antioxidants in Echinochloa frumentacea as affected by triazole growth regulators. Plant Growth Regulation 11 (4):441–3. doi:10.1007/BF00130654.
  • Savvides, A., S. Ali, M. Tester, and V. Fotopoulos. 2016. Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends in Plant Science 21 (4):329–340.
  • Seckin, B., I. Turkan, A. H. Sekmen, and C. Ozfidan. 2010. The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum huds.(sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany 69 (1):76–85. doi:10.1016/j.envexpbot.2010.02.013.
  • Sinclair, T. R. 2011. Challenges in breeding for yield increase for drought. Trends in Plant Science 16 (6):289–93.
  • Sinha, P., N. Khurana, and N. Nautiyal. 2012. Induction of oxidative stress and antioxidant enzymes by excess cobalt in mustard. Journal of Plant Nutrition 35 (6):952–60. doi:10.1080/01904167.2012.663636.
  • Tewari, R. K., P. Kumar, and P. N. Sharma. 2007. Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. Journal of Integrative Plant Biology 49 (3):313–22. doi:10.1111/j.1744-7909.2007.00358.x.
  • Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418 (6898):671–7. doi:10.1038/nature01014.
  • Van Eeuwijk, F. A., M. Malosetti, X. Yin, P. C. Struik, and P. Stam. 2005. Statistical models for genotype by environment data: From conventional ANOVA models to eco-physiological QTL models. Australian Journal of Agricultural Research 56 (9):883–94. doi:10.1071/AR05153.
  • Viuda-Martos, M., J. A. Pérez-Álvarez, and J. Fernández-López. 2013. Functional Antioxidant Foods. In Food oxidants and antioxidants: Chemical, Biological, and functional properties, 489–528. Boca Raton, Florida, USA: CRC Press.
  • Vosough, A., R. Ghouchani, and A. Saed-Moucheshi. 2015. Genotypic variation and heritability of antioxidant related traits in wheat landraces of Iran. Paper Read at Biological Forum 7 (2):43–52.
  • Zalewski, K., L. B. Lahuta, and M. Horbowicz. 2001. The effect of soil drought on the composition of carbohydrates in yellow lupin seeds and triticale kernels. Acta Physiologiae Plantarum 23 (1):73–8. doi:10.1007/s11738-001-0025-x.
  • Zduńczyk, Z., M. Flis, H. Zieliński, M. Wróblewska, Z. Antoszkiewicz, and J. Juśkiewicz. 2006. In vitro antioxidant activities of barley, husked oat, naked oat, triticale, and buckwheat wastes and their influence on the growth and biomarkers of antioxidant status in rats. Journal of Agricultural and Food Chemistry 54 (12):4168–75. doi:10.1021/jf060224m.
  • Zhang, M., Z. Q. Jin, J. Zhao, G. Zhang, and F. Wu. 2015. Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley. Plant Growth Regulation 75 (2):567–74. doi:10.1007/s10725-014-0022-x.
  • Żur, I., E. Dubas, M. Krzewska, F. Janowiak, K. Hura, E. Pociecha, R. Bączek-Kwinta, and A. Płażek. 2014. Antioxidant activity and ROS tolerance in triticale (× triticosecale wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell, Tissue and Organ Culture 119 (1):79–94. doi:10.1007/s11240-014-0515-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.