318
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Natural variation of Arabidopsis thaliana root architecture in response to nitrate availability

, , , , &
Pages 723-736 | Received 22 Nov 2017, Accepted 21 Mar 2018, Published online: 14 Feb 2019

References

  • Bouguyon, E., Brun, F. D. Meynard, M. Kubeš, M. Pervent, S. Leran, B. Lacombe, G. Krouk, E. Guiderdoni, E. Zažímalová, K., et al. 2015. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nature Plants 1 (3):15015. doi: 10.1038/nplants.2015.15.
  • Castaings, L., C. Marchive, C. Meyer, and A. Krapp. 2011. Nitrogen signalling in Arabidopsis: How to obtain insights into a complex signalling network. Journal of Experimental Botany 62 (4):1391–1397. doi: 10.1093/jxb/erq375.
  • Cataldo, D. A., M. Maroon, L. E. Schrader, and V. L. Youngs. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis 6 (1):71–80. doi: 10.1080/00103627509366547.
  • Chardon, F., J. Barthélémy, F. Daniel-Vedele, and C. Masclaux-Daubresse. 2010. Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. Journal of Experimental Botany 61 (9):2293–2302. doi: 10.1093/jxb/erq059.
  • Crawford, N. M. 1995. Nitrate: nutrient and signal for plant growth. The Plant Cell 7 (7):859–868. doi: 10.1105/tpc.7.7.859
  • De Pessemier, J., F. Chardon, M. Juraniec, P. Delaplace, and C. Hermans. 2013. Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana. Mechanisms of Development 130 (1):45–53. doi: 10.1016/j.mod.2012.05.010.
  • Desnos, T. 2008. Root branching responses to phosphate and nitrate. Current Opinion in Plant Biology 11 (1):82–87. doi: 10.1016/j.pbi.2007.10.003
  • Drechsler, N., Y. Zheng, A. Bohner, B. Nobmann, N. von Wirén, R. Kunze, and C. Rausch. 2015. Nitrate-dependent control of shoot K homeostasis by the nitrate transporter1/peptide transporter family member NPF7.3/NRT1.5 and the stelar K + outward rectifier SKOR in Arabidopsis. Plant Physiology 169 (4):2832–2847. doi: 10.1104/pp.15.01152
  • Forde, B. G. 2014. Nitrogen signalling pathways shaping root system architecture: An update. Current Opinion in Plant Biology 21:30–36. doi: 10.1016/j.pbi.2014.06.004.
  • Forde, B. G., and P. I. A. Walch-Liu. 2009. Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant, Cell & Environment 32 (6):682–693. doi: 10.1111/j.1365-3040.2008.01927.x
  • Giehl, R. F., and N. von Wiren. 2014. Root nutrient foraging. Plant Physiology 166 (2):509–517. doi: 10.1104/pp.114.245225.
  • Giehl, R. F. H., J. E. Lima, and N. von Wirén. 2012. Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. The Plant Cell 24 (1):33–49. doi: 10.1105/tpc.111.092973.
  • Good, A. G., A. K. Shrawat, and D. G. Muench. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science 9 (12):597–605. doi: 10.1016/j.tplants.2004.10.008.
  • Guan, P. Z., R. C. Wang, P. Nacry, G. Breton, S. A. Kay, J. L. Pruneda-Paz, A. Davani, and N. M. Crawford. 2014. Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proceedings of the National Academy of Sciences 111 (42):15267–15272. doi: 10.1073/pnas.1411375111.
  • Hermans, C., J. P. Hammond, P. J. White, and N. Verbruggen. 2006. How do deficiencies of essential mineral elements alter biomass allocation. Trends Plant Science 11 (12):610–617. doi: 10.1016/j.tplants.2006.10.007.
  • Ikram, S., M. Bedu, F. Daniel-Vedele, S. Chaillou, and F. Chardon. 2012. Natural variation of Arabidopsis response to nitrogen availability. Journal of Experimental Botany 63 (1):91–105. doi: 10.1093/jxb/err244.
  • Kellermeier, F., P. Armengaud, T. J. Seditas, J. Danku, D. E. Salt, and A. Amtmann. 2014. Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. The Plant Cell 26 (4):1480–1496. doi: 10.1105/tpc.113.122101.
  • Kiba, T., and A. Krapp. 2016. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant and Cell Physiology 57 (4):707–714. doi: 10.1093/pcp/pcw052.
  • Kobayashi, Y., T. Ikka, K. Kimura, O. Yasuda, and H. Koyama. 2007. Characterisation of lanthanum toxicity for root growth of Arabidopsis thaliana from the aspect of natural genetic variation. Functional Plant Biology 34 (11):984–994. doi: 10.1071/FP07133.
  • Krouk, G., Lacombe, B. A. Bielach, F. Perrine-Walker, K. Malinska, E. Mounier, K. Hoyerova, P. Tillard, S. Leon, K. Ljung, E., et al. 2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell 18 (6):927–937. doi: 10.1016/j.devcel.2010.05.008.
  • López-Bucio, J., A. Cruz-Ramı́rez, and, and L. Herrera-Estrella. 2003. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology 6 (3):280–287. doi: 10.1016/S1369-5266(03)00035-9.
  • Lemaître, T., L. Gaufichon, S. Boutet-Mercey, A. Christ, and C. Masclaux-Daubresse. 2008. Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana wassileskija accession. Plant and Cell Physiology 49 (7):1056–1065. doi: 10.1093/pcp/pcn081.
  • Linkohr, B. I., L. C. Williamson, A. H. Fitter, and H. M. Ottoline Leyser. 2002. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal 29 (6):751–760. doi: 10.1046/j.1365-313X.2002.01251.x.
  • Loudet, O., S. Chaillou, P. Merigout, J. Talbotec, and F. Daniel-Vedele. 2003. Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiology 131 (1):345–358. doi: 10.1104/pp.102.010785.
  • Lynch, J. P. 2013. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany 112 (2):347–357. doi: 10.1093/aob/mcs293
  • Masclaux-Daubresse, C., and F. Chardon. 2011. Exploring nitrogen remobilization for seed filling using natural variation in Arabidopsis thaliana. Journal of Experimental Botany 62 (6):2131–2142. doi: 10.1093/jxb/erq405.
  • Masclaux-Daubresse, C., F. Daniel-Vedele, J. Dechorgnat, F. Chardon, L. Gaufichon, and A. Suzuki. 2010. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany 105 (7):1141–1157. doi: 10.1093/aob/mcq028.
  • Mounier, E., M. Pervent, K. Ljung, A. Gojon, and P. Nacry. 2014. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability. Plant, Cell & Environment 37 (1):162–174. doi: 10.1111/pce.12143.
  • North, K. A., B. Ehlting, A. Koprivova, H. Rennenberg, and S. Kopriva. 2009. Natural variation in Arabidopsis adaptation to growth at low nitrogen conditions. Plant Physiology and Biochemistry 47 (10):912–918. doi: 10.1016/j.plaphy.2009.06.009.
  • Péret, B., B. D. Rybel, I. Casimiro, E. Benková, R. Swarup, L. Laplaze, T. Beeckman, and M. J. Bennett. 2009. Arabidopsis lateral root development: an emerging story. Trends in Plant Science 14 (7):399–408. doi: 10.1016/j.tplants.2009.05.002
  • Poorter, H., K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot, and L. Mommer. 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193 (1):30–50. doi: 10.1111/j.1469-8137.2011.03952.x.
  • Rauh, B. L., C. Basten, and E. S. Buckler. 2002. Quantitative trait loci analysis of growth response to varying nitrogen sources in Arabidopsis thaliana. Theoretical and Applied Genetics 104 (5):743–750. doi: 10.1007/s00122-001-0815-y.
  • Richard-Molard, C., A. Krapp, F. Brun, B. Ney, F. Daniel-Vedele, and S. Chaillou. 2008. Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes. Journal of Experimental Botany 59 (4):779–791. doi: 10.1093/jxb/erm363.
  • Ruffel, S., G. Krouk, D. Ristova, D. Shasha, K. D. Birnbaum, and G. M. Coruzzi. 2011. Nitrogen economics of root foraging: Transitive closure of the nitrate–cytokinin relay and distinct systemic signaling for N supply vs. demand. Proceedings of the National Academy of Sciences of the United States of America 108 (45):18524–18529. doi: 10.1073/pnas.1108684108.
  • Tian, H. Y., I. de Smet, and Z. H. Ding. 2014. Shaping a root system: regulating lateral versus primary root growth. Trends in Plant Science 19 (7):426–431. doi: 10.1016/j.tplants.2014.01.007.
  • Vendrell, P. F., and J. Zupancic. 1990. Determination of soil nitrate by transnitration of salicylic acid. Communications in Soil Science and Plant Analysis 21 (13–16):1705–1713. doi: 10.1080/00103629009368334.
  • Vidal, E. A., V. Araus, C. Lu, G. Parry, P. J. Green, G. M. Coruzzi, and R. A. Gutierrez. 2010. Nitrate-responsive miR393/AFB3regulatory module controls root system architecture in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 107 (9):4477–4482. doi: 10.1073/pnas.0909571107.
  • Vidal, E. A., K. P. Tamayo, and R. A. Gutierrez. 2010. Gene networks for nitrogen sensing, signaling, and response in Arabidopsis thaliana. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 2 (6):683–693. doi: 10.1002/wsbm.87.
  • Xiao, Q. Y., H. D. Gernier, L. Kupcsik, J. D. Pessemier, K. Dittert, K. Fladung, N. Verbruggen, and C. Hermans. 2015. Natural genetic variation of Arabidopsis thaliana root morphological response to magnesium supply. Crop and Pasture Science 66 (12):1249–1258. doi: 10.1071/CP15108.
  • Xu, G. H., X. R. Fan, and A. J. Miller. 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology 63:153–182. doi: 10.1146/annurev-arplant-042811-105532
  • Xu, N., R. C. Wang, L. F. Zhao, C. F. Zhang, Z. H. Li, Z. Lei, F. Liu, P. Z. Guan, Z. H. Chu, N. M. Crawford, and Y. Wang. 2016. The Arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators. The Plant Cell 28 (2):485–504. doi: 10.1105/tpc.15.00567
  • Zhang, H. M., and B. G. Forde. 2000. Regulation of Arabidopsis root development by nitrate availability. Journal of Experimental Botany 51 (342):51–59. doi: 10.1093/jxb/51.342.51.
  • Zhang, H. M., A. Jennings, P. W. Barlow, and B. G. Forde. 1999. Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences of the United States of America 96 (11):6529–6534. doi: 10.1073/pnas.96.11.6529
  • Zolla, G., Y. M. Heimer, and S. Barak. 2010. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. Journal of Experimental Botany 61 (1):211–224. doi: 10.1093/jxb/erp290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.