178
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Comparative effects of chloride and sulfate salinities on two contrasting rice cultivars (Oryza sativa L.) at the seedling stage

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1001-1015 | Received 17 Apr 2018, Accepted 11 Jul 2018, Published online: 05 Apr 2019

References

  • Ahanger, M. A., N. S. Tomar, M. Tittal, S. Argal, and R. M. Agarwal. 2017. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants 23 (4):731–44. doi: 10.1007/s12298-017-0462-7.
  • Aktas, H., L. Karni, D. C. Chang, E. Turhan, A. Bar-Tal, and B. Aloni. 2005. The suppression of salinity-associated oxygen radicals production, in pepper (Capsicum annuum) fruit, by manganese, zinc and calcium in relation to its sensitivity to blossom-end rot. Physiologia Plantarum 123 (1):67–74. doi: 10.1111/j.1399-3054.2004.00435.x.
  • Al-Temimi, A., and R. Choudhary. 2013. Determination of antioxidant activity in different kinds of plants in vivo and in vitro by using diverse technical methods. Nutrition & Food Sciences 3:1. doi: 10.4172/2155-9600.1000184.
  • An, P., X. Li, Y. Zheng, A. E. Eneji, and S. Inanaga. 2014. Calcium effects on root cell wall composition and ion contents in two soybean cultivars under salinity stress. Canadian Journal of Plant Science 94 (4):733–40. doi: 10.4141/cjps2013-291.
  • Arnao, M. B., A. Cano, and M. Acosta. 2001. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry 73 (2):239–44. doi: 10.1016/S0308-8146(00)00324-1.
  • Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39 (1):205–07. doi: 10.1007/BF00018060.
  • Bilski, J. J., D. C. Nelson, and R. L. Conlon. 1988. Response of six wild potato species to chloride and sulfate salinity. American Journal of Potato Research 65 (10):605–12. doi: 10.1007/BF02908345.
  • Bohnert, H. J., and R. G. Jensen. 1996. Metabolic engineering for increased salt tolerance – the next step. Functional Plant Biology 23 (5):661–67. doi: 10.1071/PP9960661.
  • Bose, J., A. Rodrigo-Moreno, and S. Shabala. 2014. ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany 65 (5):1241–57. doi: 10.1093/jxb/ert430.
  • Bowman, D. C., G. R. Cramer, and D. A. Devitt. 2006. Effect of salinity and nitrogen status on nitrogen uptake by tall fescue turf. Journal of Plant Nutrition 29 (8):1481–90. doi: 10.1080/01904160600837584.
  • Cereser, C., J. Guichard, J. Drai, E. Bannier, I. Garcia, S. Boget, P. Parvaz, and A. Revol. 2001. Quantitation of reduced and total glutathione at the femtomole level by high-performance liquid chromatography with fluorescence detection: application to red blood cells and cultured fibroblasts. Journal of Chromatography B: Biomedical Sciences and Applications 752 (1):123–32. doi: 10.1016/S0378-4347(00)00534-X.
  • Chinnusamy, V., A. Jagendorf, and J. K. Zhu. 2005. Understanding and improving salt tolerance in plants. Crop Science 45 (2):437–48. doi: 10.2135/cropsci2005.0437.
  • Choi, W. G., M. Toyota, S. H. Kim, R. Hilleary, and S. Gilroy. 2014. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences 111 (17):6497–502. doi: 10.1073/pnas.1319955111.
  • Curtin, D., H. Steppuhn, and F. Selles. 1993. Plant responses to sulfate and chloride salinity: growth and ionic relations. Soil Science Society of America Journal 57 (5):1304–10. doi: 10.2136/sssaj1993.03615995005700050024x.
  • Daliakopoulos, I. N., I. K. Tsanis, A. Koutroulis, N. N. Kourgialas, A. E. Varouchakis, G. P. Karatzas, and C. J. Ritsema. 2016. The threat of soil salinity: a European scale review. Science of the Total Environment 573:727–39. doi: 10.1016/j.scitotenv.2016.08.177.
  • Datta, K. S., A. Kumar, S. K. Varma, and R. Angrish. 1995. Differentiation of chloride and sulphate salinity on the basis of ionic distribution in genetically diverse cultivars of wheat. Journal of Plant Nutrition 18 (10):2199–212. doi: 10.1080/01904169509365056.
  • Devinar, G., A. Llanes, O. Masciarelli, and V. Luna. 2013. Different relative humidity conditions combined with chloride and sulfate salinity treatments modify abscisic acid and salicylic acid levels in the halophyte Prosopis strombulifera. Plant Growth Regulation 70 (3):247–56. doi: 10.1007/s10725-013-9796-5.
  • Fort, D. J., M. B. Mathis, R. Walker, L. K. Tuominen, M. Hansel, S. Hall, R. Richards, S. R. Grattan, and K. Anderson. 2014. Toxicity of sulfate and chloride to early life stages of wild rice (Zizania palustris). Environmental Toxicology and Chemistry 33 (12):2802–09. doi: 10.1002/etc.2744.
  • Frouin, J., A. Languillaume, J. Mas, D. Mieulet, A. Boisnard, A. Labeyrie, M. Bettembourg, C. Bureau, E. Lorenzini, M. Portefaix., et al. 2018. Tolerance to mild salinity stress in japonica rice: A genome-wide association mapping study highlights calcium signaling and metabolism genes. PLoS One 13 (1):e0190964. doi: 10.1371/journal.pone.0190964.
  • Gao, Y., D. Li, and Y. Chen. 2012. Differentiation of carbonate, chloride, and sulfate salinity responses in tall fescue. Scientia Horticulturae 139:1–7. doi: 10.1016/j.scienta.2012.02.035.
  • Gill, S. S., N. A. Anjum, M. Hasanuzzaman, R. Gill, D. K. Trivedi, I. Ahmad, E. Pereira, and N. Tuteja. 2013. Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry 70:204–12. doi: 10.1016/j.plaphy.2013.05.032.
  • Gupta, V. K., and S. P. Gupta. 1984. Effect of zinc sources and levels on the growth and Zn nutrition of soybean (Glycine max L.) in the presence of chloride and sulphate salinity. Plant and Soil 81 (2):299–304. doi: 10.1007/BF02197164.
  • Hamrouni, L., M. Hanana, C. Abdelly, and A. Ghorbel. 2011. Exclusion du chlorure et inclusion du sodium: deux mécanismes concomitants de tolérance à la salinité chez la vigne sauvage Vitis vinifera subsp. sylvestris (var.'Séjnène.)/chloride exclusion and sodium inclusion: two concomitant mechanisms of salt tolerance in Vitis vinifera subsp. sylvestris (var.'Séjnène') wild type grapevine. Biotechnologie, Agronomie, Société et Environnement 15 (3):387.
  • Han, L., Y. Gao, and D. Li. 2014. Ion uptake in tall fescue as affected by carbonate, chloride, and sulfate salinity. PLoS One 9 (3):e91908doi: 10.1371/journal.pone.0091908.
  • Hasegawa, P. M. 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany 92:19–31. doi: 10.1016/j.envexpbot.2013.03.001.
  • Hasson-Porath, E., I. Kahana, and A. Poljakoff-Mayber. 1972. The effect of chloride and sulphate types of salinity on growth and on osmotic adaptation of pea seedlings. Plant and Soil 36(1–3):449–59. doi: 10.1007/BF01373497.
  • Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125 (1):189–98.
  • Khan, M. I. R., M. Asgher, N. Iqbal, and R. Khan. 2012. Potentiality of sulphur-containing compounds in salt stress tolerance. In Ecophysiology and responses of plants under salt stress, eds. P. Ahmad, M.M. Azooz and M.N.V. Prasad, pp. 443–472. New York, NY: Springer Science. ISBN 978-1-4614-4747-4.
  • Khare, T., V. Kumar, and P. B. K. Kishor. 2015. Na+ and Cl− ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma 252 (4):1149–65. doi: 10.1007/s00709-014-0749-2.
  • Kimura, K.,. M. Okumura, and S. I. Yamasaki. 2004. Effects of chloride and sulfate application on root growth of rice. Soil Science and Plant Nutrition 50 (3):395–402. doi: 10.1080/00380768.2004.10408493.
  • Lefèvre, I., E. Gratia, and S. Lutts. 2001. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Science 161 (5):943–52. doi: 10.1016/S0168-9452(01)00485-X.
  • Lutts, S., J. Bouharmont, and J. M. Kinet. 1999. Physiological characterisation of salt-resistant rice (Oryza sativa) somaclones. Australian Journal of Botany 47 (6):835–49. doi: 10.1071/BT97074.
  • Lutts, S., J. M. Kinet, and J. Bouharmont. 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany 46 (12):1843–52. doi: 10.1093/jxb/46.12.1843.
  • Lutts, S., J. M. Kinet, and J. Bouharmont. 1996. Effects of various salts and of mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) callus cultures. Journal of Plant Physiology 149 (1–2):186–95. doi: 10.1016/S0176-1617(96)80193-3.
  • Maathuis, F. J. M., I. Ahmad, and J. Patishtan. 2014. Regulation of Na(+) fluxes in plants. Frontiers in Plant Science 5:467doi: 10.3389/fpls.2014.00467.
  • Manchanda, H. R., S. K. Sharma, and D. K. Bhandari. 1982. Response of barley and wheat to phosphorus in the presence of chloride and sulphate salinity. Plant and Soil 66 (2):233–41. doi: 10.1007/BF02183982.
  • Mor, R. P., and H. R. Manchanda. 1992. Influence of phosphorus on the tolerance of table pea to chloride and sulfate salinity in a sandy soil. Arid Land Research and Management 6 (1):41–52. doi: 10.1080/15324989209381295.
  • Morgan, S. H., P. J. Maity, C. M. Geilfus, S. Lindberg, and K. H. Mühling. 2014. Leaf ion homeostasis and plasma-membrane H+-ATPase activity in Vicia faba change after extra-calcium and potassium supply under salinity. Plant Physiology and Biochemistry 82:244–53. doi: 10.1016/j.plaphy.2014.06.010.
  • Navarro, J. M., C. Garrido, M. Carvajal, and V. Martinez. 2002. Yield and fruit quality of pepper plants under sulphate and chloride salinity. The Journal of Horticultural Science and Biotechnology 77 (1):52–7. doi: 10.1080/14620316.2002.11511456.
  • Nijimbere, S. 2014. Physico-chimie de sols rizicultivés affectés par la salinité dans la basse vallée de la Rusizi au Burundi. PhD Thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium, p. 337.
  • Ozgur, R., B. Uzilday, A. H. Sekmen, and I. Turkan. 2013. Reactive oxygen species regulation and antioxidant defence in halophytes. Functional Plant Biology 40 (9):832–47. doi: 10.1071/FP12389.
  • Pires, I. S., S. Negrão, M. M. Oliveira, and M. D. Purugganan. 2015. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress. Physiologia Plantarum 155 (1):43–54. doi: 10.1111/ppl.12356.
  • Rahman, A., M. S. Hossain, J. A. Mahmud, K. Nahar, M. Hasanuzzaman, and M. Fujita. 2016. Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiology and Molecular Biology of Plants 22 (3):291–306. doi: 10.1007/s12298-016-0371-1.
  • Reich, M., T. Aghajanzadeh, J. Helm, S. Parmar, M. J. Hawkesford, and L. J. De Kok. 2017. Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant and Soil 411 (1–2):319–32. doi: 10.1007/s11104-016-3026-7.
  • Rengasamy, P. 2006. World salinization with emphasis on Australia. Journal of Experimental Botany 57 (5):1017–23. doi: 10.1093/jxb/erj108.
  • Rhoades, J. D. 1989. Intercepting, isolating and reusing drainage waters for irrigation to conserve water and protect water quality. Agricultural Water Management 16 (1–2):37–52. doi: 10.1016/0378-3774(89)90039-5.
  • Rogers, M. E., C. M. Grieve, and M. C. Shannon. 1998. The response of Lucerne (Medicago sativa L.) to sodium sulphate and chloride salinity. Plant and Soil 202 (2):271–80. doi: 10.1023/A:1004317513474.
  • Samson, M. E., J. Fortin, S. Pepin, and J. Caron. 2016. Impact of potassium sulfate salinity on growth and development of cranberry plants subjected to overhead and subirrigation. Canadian Journal of Soil Science 97 (1):20–30. doi: 10.1139/cjss-2015-0111.
  • Thapa, R., A. Wick, and A. Chatterjee. 2017. Response of spring wheat to sulfate-based salinity stress under greenhouse and field conditions. Agronomy Journal 109 (2):442–54. doi: 10.2134/agronj2016.07.0384.
  • White, P. J., and M. R. Broadley. 2001. Chloride in soils and its uptake and movement within the plant: a review. Annals of Botany 88 (6):967–88. doi: 10.1006/anbo.2001.1540.
  • Wu, G., A. J. Peterson, C. F. Morris, and K. M. Murphy. 2016. Quinoa seed quality response to sodium chloride and sodium sulfate salinity. Frontiers in Plant Science 7:790. doi: 10.3389/fpls.2016.00790.
  • Yemm, E. W., and A. J. Willis. 1954. The estimation of carbohydrates in plant extracts by anthrone. The Biochemical Journal 57 (3):508
  • Yoshida, S., D. A. Forno, J. H. Cock, and K. A. Gomez. 1976. Laboratory manual for physiological studies of rice. 3rd Ed., Manila, Philippines: International Rice Research Institute.
  • Zhou, Q., W. Li, X. Cai, D. Wang, X. Hua, L. Qu, J. Lin, and T. Chen. 2011. Net sodium fluxes change significantly at anatomically distinct root zones of rice (Oryza sativa L.) seedlings. Journal of Plant Physiology 168 (11):1249–55. doi: 10.1016/j.jplph.2011.01.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.