867
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Targeting nitrogen use efficiency for sustained production of cereal crops

&
Pages 1086-1113 | Received 19 Apr 2018, Accepted 25 Jun 2018, Published online: 02 Apr 2019

References

  • Abiko, T., M. Wakayama, A. Kawakami, M. Obara, H. Kisaka, T. Miwa, N. Aoki, and R. Ohsugi. 2010. Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP (H)-dependent glutamate dehydrogenase (gdhA). Planta 232(2):299–311. doi:10.1007/s00425-010-1172-3.
  • Adam, Z., I. Adamska, K. Nakabayashi, O. Ostersetzer, K. Haussuhl, A. Manuell, B. Zheng, O. Vallon, S. R. Rodermel, K. Shinozaki, and A. K. Clarke. 2001. Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiology 125(4):1912–8. doi:10.1104/pp.125.4.1912.
  • Agneessens, L., J. De Waele, and S. De Neve. 2014. Review of alternative management options of vegetable crop residues to reduce nitrate leaching in intensive vegetable rotations. Agronomy 4(4):529–55. doi:10.3390/agronomy4040529.
  • Agrama, H. A. S., A. G. Zakaria, F. B. Said, and M. Tuinstra. 1999. Identification of quantitative trait loci for nitrogen use efficiency in maize. Molecular Breeding 5(2):187–95. doi:10.1023/A:1009669507144.
  • Ameziane, R., K. Bernhard, and D. Lightfoot. 2000. Expression of the bacterial gdhA gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development. Plant and Soil 221(1):47–57.
  • An, D., J. Su, Q. Liu, Y. Zhu, Y. Tong, J. Li, R. Jing, B. Li, and Z. Li. 2006. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant and Soil 284(1-2):73–84. doi:10.1007/s11104-006-0030-3.
  • Asplund, L., G. Bergkvist, and M. Weih. 2016. Functional traits associated with nitrogen use efficiency in wheat. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science 66(2):153–69. doi:10.1080/09064710.2015.1087586.
  • Atkinson, J. A., L. U. Wingen, M. Griffiths, M. P. Pound, O. Gaju, M. J. Foulkes, J. Le Gouis, S. Griffiths, M. J. Bennett, J. King, and D. M. Wells. 2015. Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. Journal of Experimental Botany 66(8):2283–92. doi:10.1093/jxb/erv006.
  • Bageshwar, U. K., M. Srivastava, P. Pardha-Saradhi, S. Paul, S. Gothandapani, R. S. Jaat, P. Shankar, R. Yadav, D. R. Biswas, P. A. Kumar, and J. C. Padaria. 2017. An environmentally friendly engineered azotobacter strain that replaces a substantial amount of urea fertilizer while sustaining the same wheat yield. Applied and Environmental Microbiology 83(15):e00590–17.
  • Bardon, C., F. Piola, F. Bellvert, F. E. Z. Haichar, G. Comte, G. Meiffren, T. Pommier, S. Puijalon, N. Tsafack, and F. Poly. 2014. Evidence for biological denitrification inhibition (BDI) by plant secondary metabolites. New Phytologist 204(3):620–30. doi:10.1111/nph.12944.
  • Barraclough, P. B., J. R. Howarth, J. Jones, R. Lopez-Bellido, S. Parmar, C. E. Shepherd, and M. J. Hawkesford. 2010. Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement. European Journal of Agronomy 33(1):1–11. doi:10.1016/j.eja.2010.01.005.
  • Barraclough, P. B., A. H. Weir, and H. Kuhlmann. 1991. Factors affecting the growth and distribution of winter wheat roots under UK field conditions. Developments in Agricultural and Managed Forest Ecology. 24: 410–41.
  • Bernard, S. M., and D. Z. Habash. 2009. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. The New Phytologist 182(3):608–20. doi:10.1111/j.1469-8137.2009.02823.x.
  • Bertrand, H., C. Plassard, X. Pinochet, B. Touraine, P. Normand, and J. C. Cleyet-Marel. 2000. Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.). Canadian Journal of Microbiology 46(3):229–36. doi:10.1139/w99-137.
  • Bezant, H., D. A. Laurie, N. Pratchett, J. Chojecki, and M. J. Kearsey. 1997. Mapping of QTL controlling NIR predicted hot water extract and grain nitrogen content in a spring barley cross using marker‐regression. Plant Breeding 116(2):141–5. doi:10.1111/j.1439-0523.1997.tb02168.x.
  • Bhattacharjee, R. B., A. Singh, and S. N. Mukhopadhyay. 2008. Use of nitrogen -fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Applied Microbiology and Biotechnology 80(2):199–209. doi:10.1007/s00253-008-1567-2.
  • Bi, Y. M., S. Kant, J. Clark, S. Gidda, F. Ming, J. Xu, A. Rochon, B. J. Shelp, L. Hao, R. Zhao, and R. T. Mullen. 2009. Increased nitrogen‐use efficiency in transgenic rice plants over‐expressing a nitrogen‐responsive early nodulin gene identified from rice expression profiling. Plant, Cell & Environment 32(12):1749–60. doi:10.1111/j.1365-3040.2009.02032.x.
  • Bingham, I. J., A. J. Karley, P. J. White, W. T. B. Thomas, and J. R. Russell. 2012. Analysis of improvements in nitrogen use efficiency associated with 75 years of spring barley breeding. European Journal of Agronomy 42:49–58. doi:10.1016/j.eja.2011.10.003.
  • Bottini, R., F. Cassán, and P. Piccoli. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology 65(5):497–503.
  • Brauer, E. K., A. Rochon, Y. M. Bi, G. G. Bozzo, S. J. Rothstein, and B. J. Shelp. 2011. Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiologia Plantarum 141(4):361–72. doi:10.1111/j.1399-3054.2011.01443.x.
  • Cai, H., Y. Zhou, J. Xiao, X. Li, Q. Zhang, and X. Lian. 2009. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Reports 28(3):527–37. doi:10.1007/s00299-008-0665-z.
  • Cañas, R. A., I. Quilleré, A. Gallais, and B. Hirel. 2012. Can genetic variability for nitrogen metabolism in the developing ear of maize be exploited to improve yield?. The New Phytologist 194(2):440–52. doi:10.1111/j.1469-8137.2012.04067.x.
  • Cassman, K. G., A. Dobermann, and D. T. Walters. 2002. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO: A Journal of the Human Environment 31(2):132–40. doi:10.1579/0044-7447-31.2.132.
  • Charpentier, M., and G. Oldroyd. 2010. How close are we to nitrogen-fixing cereals?. Current Opinion in Plant Biology 13(5):556–64. doi:10.1016/j.pbi.2010.08.003.
  • Chen, J., Y. Zhang, Y. Tan, M. Zhang, L. Zhu, G. Xu, and X. Fan. 2016. Agronomic nitrogen‐use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnology Journal 14(8):1705–15. doi:10.1111/pbi.12531.
  • Chichkova, S., J. Arellano, C. P. Vance, and G. Hernández. 2001. Transgenic tobacco plants that overexpress alfalfa NADH‐glutamate synthase have higher carbon and nitrogen content. Journal of Experimental Botany 52(364):2079–87. doi:10.1093/jexbot/52.364.2079.
  • Coque, M., and A. Gallais. 2006. Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theoretical and Applied Genetics 112(7):1205–20. doi:10.1007/s00122-006-0222-5.
  • Cormier, F., S. Faure, P. Dubreuil, E. Heumez, K. Beauchêne, S. Lafarge, S. Praud, and J. Le Gouis. 2013. A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.). Theoretical and Applied Genetics 126(12):3035–48. doi:10.1007/s00122-013-2191-9.
  • Craswell, E. T., and D. C. Godwin. 1984. The efficiency of nitrogen fertilizers applied to cereals grown in different climates (No. REP-3326. CIMMYT).
  • Crawford, N. M., and H. N. Arst. Jr. 1993. The molecular genetics of nitrate assimilation in fungi and plants. Annual Review of Genetics 27(1):115–46. doi:10.1146/annurev.ge.27.120193.000555.
  • Crété, P., M. Caboche, and C. Meyer. 1997. Nitrite reductase expression is regulated at the post‐transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana. The Plant Journal 11(4):625–34. doi:10.1046/j.1365-313X.1997.11040625.x.
  • Cui, F., X. Fan, C. Zhao, W. Zhang, M. Chen, J. Ji, and J. Li. 2014. A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genetics 15(1):57. doi:10.1186/1471-2156-15-57.
  • Dechorgnat, J., C. T. Nguyen, P. Armengaud, M. Jossier, E. Diatloff, S. Filleur, and F. Daniel-Vedele. 2011. From the soil to the seeds: the long journey of nitrate in plants. Journal of Experimental Botany 62(4):1349–59. doi:10.1093/jxb/erq409.
  • DeLima, R. O. 2010. Herança e relação entre caracteres associados à morfologia de raiz e eficiência de uso de nitrogênio em milho. PhD diss., Universidade Federal de Viçosa, Viçosa.
  • Deng, Z., Y. Cui, Q. Han, W. Fang, J. Li, and J. Tian. 2017. Discovery of consistent QTLs of wheat spike-related traits under nitrogen treatment at different development stages. Frontiers in Plant Science 8 :2120.
  • Djennane, S., J. E. Chauvin, and C. Meyer. 2002. Glasshouse behaviour of eight transgenic potato clones with a modified nitrate reductase expression under two fertilization regimes. Journal of Experimental Botany 53(371):1037–45. doi:10.1093/jexbot/53.371.1037.
  • Djennane, S., J. E. Chauvin, I. Quilleré, C. Meyer, and Y. Chupeau. 2002. Introduction and expression of a deregulated tobacco nitrate reductase gene in potato lead to highly reduced nitrate levels in transgenic tubers. Transgenic Research 11(2):175–84.
  • Fageria, N. K., and V. C. Baligar. 2005. Enhancing nitrogen use efficiency in crop plants. Advances in Agronomy 88 :97–185.
  • Fageria, N. K., and A. B. Santos. 2014. Lowland rice genotypes evaluation for nitrogen use efficiency. Journal of Plant Nutrition 37(9):1410–23. doi:10.1080/01904167.2013.868482.
  • Fageria, N. K., V. C. Baligar, and Y. C. Li. 2008. The role of nutrient efficient plants in improving crop yields in the twenty first century. Journal of Plant Nutrition 31(6):1121–57. doi:10.1080/01904160802116068.
  • Feng, Y., L. Y. Cao, W. M. Wu, X. H. Shen, X. D. Zhan, R. R. Zhai, R. C. Wang, D. B. Chen, and S. H. Cheng. 2010. Mapping QTLs for nitrogen deficiency tolerance at seedling stage in rice (Oryza sativa L.). Plant Breeding 129(6):652–6. doi:10.1111/j.1439-0523.2009.01728.x.
  • Fischer, R. A., D. Byerlee, and G. O. Edmeades. 2009. June. Can technology deliver on the yield challenge to 2050. In Expert meeting on how to feed the world 2050. 1–48.
  • Fontaine, J. X., C. Ravel, K. Pageau, E. Heumez, F. Dubois, B. Hirel, and J. Le Gouis. 2009. A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen related physiological traits to the agronomic performance of common wheat. Theoretical and Applied Genetics 119(4):645–62. doi:10.1007/s00122-009-1076-4.
  • Ford, K. E., P. J. Gregory, M. J. Gooding, and S. Pepler. 2006. Genotype and fungicide effects on late-season root growth of winter wheat. Plant and Soil 284(1-2):33–44. doi:10.1007/s11104-006-0028-x.
  • Forde, B., and H. Lorenzo. 2001. The nutritional control of root development. Plant and Soil 232(1/2):51–68. doi:10.1023/A:1010329902165.
  • Forde, B. G. 2000. Nitrate transporters in plants: structure, function and regulation. Biochimica et Biophysica Acta (BBA)-Biomembranes 1465(1-2):219–35. doi:10.1016/S0005-2736(00)00140-1.
  • Forde, B. G. 2002. Local and long-range signaling pathways regulating plant responses to nitrate. Annual Review of Plant Biology 53(1):203–24. doi:10.1146/annurev.arplant.53.100301.135256.
  • Foulkes, M. J., M. P. Reynolds, and R. Sylvester-Bradley. 2009. Genetic improvement of grain crops: yield potential. Crop physiology: Applications for genetic improvement and agronomy (No. CIS-5658. CIMMYT.).
  • Foulkes, M. J., R. Sylvester-Bradley, and R. K. Scott. 1998. Evidence for differences between winter wheat cultivars in acquisition of soil mineral nitrogen and uptake and utilization of applied fertilizer nitrogen. The Journal of Agricultural Science 130(1):29–44. doi:10.1017/S0021859697005029.
  • Fuentes, S. I., D. J. Allen, A. Ortiz‐Lopez, and G. Hernández. 2001. Over‐expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. Journal of Experimental Botany 52(358):1071–81. doi:10.1093/jexbot/52.358.1071.
  • Gallais, A., and B. Hirel. 2004. An approach to the genetics of nitrogen use efficiency in maize. Journal of Experimental Botany 55(396):295–306. doi:10.1093/jxb/erh006.
  • Rodrigues, M. C., W. M. Rezende, M. E. J. Silva, S. V. Faria, L. T. Zuffo, J. C. C. Galvão, and R. O. DeLima. 2017. Genotypic variation and relationships among nitrogen use efficiency and agronomic traits in tropical maize inbred lines. Genetics and Molecular Research GMR 16(3).doi:10.4238/gmr16039757.
  • García-Suárez, J., M. Röder, and J. Díaz de León. 2010. Identification of QTLs and associated molecular markers of agronomic traits in wheat (Triticum aestivum L.) under two conditions of nitrogen fertilization. Cereal Research Communications 38(4):459–70. doi:10.1556/CRC.38.2010.4.2.
  • Garnett, T. P., and G. J. Rebetzke. 2013. Improving crop nitrogen use in dryland farming. In: Improving water and nutrient-use efficiency in food production systems, 123–44. Hoboken, NJ: Wiley.
  • Glass, A. D. 2003. Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences 22(5):453–70. doi:10.1080/07352680390243512.
  • Good, A. G., and P. H. Beatty. 2011. Biotechnological approaches to improving nitrogen use efficiency in plants: alanine aminotransferase as a case study. In: The molecular and physiological basis of nutrient use efficiency in crops, 165–91. Oxford, UK: Wiley.
  • Good, A. G., S. J. Johnson, M. De Pauw, R. T. Carroll, N. Savidov, J. Vidmar, Z. Lu, G. Taylor, and V. Stroeher. 2007. Engineering nitrogen use efficiency with alanine aminotransferase. Canadian Journal of Botany 85(3):252–62. doi:10.1139/B07-019.
  • Good, A. G., A. K. Shrawat, and D. G. Muench. 2004. Can Less Yield More? Is Reducing Nutrient Input into the Environment Compatible with Maintaining Crop Production? Trends in Plant Science 9(12):597–605.
  • Guo, Y., F. M. Kong, Y. F. Xu, Y. Zhao, X. Liang, Y. Y. Wang, D. G. An, and S. S. Li. 2012. QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theoretical and Applied Genetics 124(5):851–65. doi:10.1007/s00122-011-1749-7.
  • Gupta, S., R. Yadav, K. B. Gaikwad, A. Arora, A. Kumar, A. Kushwah, and N. K. Bainsla. 2017. Deciphering physiological basis of yield gain in India wheat cultivars. Cereal Research Communications 45(3):512–24. doi:10.1556/0806.45.2017.023.
  • Guttieri, M. J., K. Frels, T. Regassa, B. M. Waters, and P. S. Baenziger. 2017. Variation for nitrogen use efficiency traits in current and historical great plains hard winter wheat. Euphytica 213(4):87.
  • Habash, D. Z., S. Bernard, J. Schondelmaier, J. Weyen, and S. A. Quarrie. 2007. The genetics of nitrogen use in hexaploid wheat: nitrogen utilisation, development and yield. Theoretical and Applied Genetics 114(3):403–19. doi:10.1007/s00122-006-0429-5.
  • Habash, D. Z., A. J. Massiah, H. L. Rong, R. M. Wallsgrove, and R. A. Leigh. 2001. The role of cytosolic glutamine synthetase in wheat. Annals of Applied Biology 138(1):83–9. doi:10.1111/j.1744-7348.2001.tb00087.x.
  • Hall, A. J., and R. A. Richards. 2013. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Research 143 :18–33. doi:10.1016/j.fcr.2012.05.014.
  • Han, M., J. Wong, T. Su, P. H. Beatty, and A. G. Good. 2016. Identification of nitrogen use efficiency genes in barley: searching for QTLs controlling complex physiological traits. Frontiers in Plant Science 7 :1587.
  • Hawkesford, M. J. 2011. An overview of nutrient use efficiency and strategies for crop improvement. In: The molecular and physiological basis of nutrient use efficiency in crops, 3–19. Chichester: Wiley.
  • Hawkesford, M. J. 2017. Genetic variation in traits for nitrogen use efficiency in wheat. Journal of Experimental Botany 68:2627–32.
  • Herold, M. B., E. M. Baggs, and T. J. Daniell. 2012. Fungal and bacterial denitrification are differently affected by long-term pH amendment and cultivation of arable soil. Soil Biology and Biochemistry 54 :25–35. doi:10.1016/j.soilbio.2012.04.031.
  • Herrera, J. M., G. Rubio, L. L. Häner, J. A. Delgado, C. A. Lucho-Constantino, S. Islas-Valdez, and D. Pellet. 2016. Emerging and established technologies to increase nitrogen use efficiency of cereals. Agronomy 6(2):25. doi:10.3390/agronomy6020025.
  • Herridge, D. F., M. B. Peoples, and R. M. Boddey. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311(1-2):1–18. doi:10.1007/s11104-008-9668-3.
  • Hillel, D., and C. Rosenzweig. 2005. The role of biodiversity in agronomy. Advances in Agronomy 88 :1–34.
  • Hirel, B., P. Bertin, I. Quilleré, W. Bourdoncle, C. Attagnant, C. Dellay, A. Gouy, S. Cadiou, C. Retailliau, M. Falque, and A. Gallais. 2001. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiology 125(3):1258–70. doi:10.1104/pp.125.3.1258.
  • Hirel, B., J. Le Gouis, B. Ney, and A. Gallais. 2007. The challenge of improving nitrogen use efficiency in crop plants: towards a more Central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany 58(9):2369–87. doi:10.1093/jxb/erm097.
  • Ho, C. H., S. H. Lin, H. C. Hu, and Y. F. Tsay. 2009. CHL1 functions as a nitrate sensor in plants. Cell 138(6):1184–94. doi:10.1016/j.cell.2009.07.004.
  • Hochholdinger, F., and R. Tuberosa. 2009. Genetic and genomic dissection of maize root development and architecture. Current Opinion in Plant Biology 12(2):172–7. doi:10.1016/j.pbi.2008.12.002.
  • Hodge, A., D. Robinson, and A. Fitter. 2000. Are microorganisms more effective than plants at competing for nitrogen?. Trends in Plant Science 5(7):304–8.
  • Hoshida, H., Y. Tanaka, T. Hibino, Y. Hayashi, A. Tanaka, T. Takabe, and T. Takabe. 2000. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology 43(1):103–11. doi:10.1023/A:1006408712416.
  • Huang, N. C., C. S. Chiang, N. M. Crawford, and Y. F. Tsay. 1996. CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. The Plant Cell 8(12):2183–91. doi:10.1105/tpc.8.12.2183.
  • Hurd, E. A. 1964. Root study of three wheat varieties and their resistance to drought and damage by soil cracking. Canadian Journal of Plant Science 44(3):240–8. doi:10.4141/cjps64-046.
  • Iniguez, A. L., Y. Dong, and E. W. Triplett. 2004. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Molecular Plant-Microbe Interactions 17(10):1078–85. doi:10.1094/MPMI.2004.17.10.1078.
  • Johnson, J. M. F., A. J. Franzluebbers, S. L. Weyers, and D. C. Reicosky. 2007. Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution 150(1):107–24. doi:10.1016/j.envpol.2007.06.030.
  • Kato, Y., Y. Yamamoto, S. Murakami, and F. Sato. 2005. Post-translational regulation of CND41 protease activity in senescent tobacco leaves. Planta 222(4):643–51. doi:10.1007/s00425-005-0011-4.
  • Kearsey, M. J. 1998. The principles of QTL analysis (a minimal mathematics approach). Journal of Experimental Botany 49(327):1619–23. doi:10.1093/jxb/49.327.1619.
  • Kichey, T., B. Hirel, E. Heumez, F. Dubois, and J. Le Gouis. 2007. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and N physiological markers. Field Crops Research 102(1):22–32. doi:10.1016/j.fcr.2007.01.002.
  • Kindu, G. A., J. Tang, X. Yin, and P. C. Struik. 2014. Quantitative trait locus analysis of nitrogen use efficiency in barley (Hordeum vulgare L.). Euphytica 199(1-2):207–21. doi:10.1007/s10681-014-1138-9.
  • King, J., A. Gay, R. Sylvester-Bradley, I. Bingham, J. Foulkes, P. Gregory, and D. Robinson. 2003. Modelling cereal root systems for water and nitrogen capture: towards an economic optimum. Annals of Botany 91(3):383–90.
  • Kurai, T., M. Wakayama, T. Abiko, S. Yanagisawa, N. Aoki, and R. Ohsugi. 2011. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low‐nitrogen conditions. Plant Biotechnology Journal 9(8):826–37. doi:10.1111/j.1467-7652.2011.00592.x.
  • Labboun, S., T. Tercé-Laforgue, A. Roscher, M. Bedu, F. M. Restivo, C. N. Velanis, D. S. Skopelitis, P. N. Moshou, K. A. Roubelakis-Angelakis, A. Suzuki, and B. Hirel. 2009. Resolving the role of plant glutamate dehydrogenase.I. In vivo real time nuclear magnetic resonance spectroscopy experiments. Plant and Cell Physiology 50(10):1761–73. doi:10.1093/pcp/pcp118.
  • Ladha, J. K., G. J. D. Kirk, J. Bennett, S. Peng, C. K. Reddy, P. M. Reddy, and U. Singh. 1998. Opportunities for increased nitrogen -use efficiency from improved lowland rice germplasm. Field Crops Research 56(1-2):41–71. doi:10.1016/S0378-4290(97)00123-8.
  • Lam, H. M., K. T. Coschigano, I. C. Oliveira, R. Melo-Oliveira, and G. M. Coruzzi. 1996. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 47(1):569–93. doi:10.1146/annurev.arplant.47.1.569.
  • Lam, H. M., P. Wong, H. K. Chan, K. M. Yam, L. Chen, C. M. Chow, and G. M. Coruzzi. 2003. Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis. Plant Physiology 132(2):926–35. doi:10.1104/pp.103.020123.
  • Laperche, A., M. Brancourt-Hulmel, E. Heumez, O. Gardet, and J. Le Gouis. 2006. Estimation of genetic parameters of a DH wheat population grown at different nitrogen stress levels characterized by probe genotypes. Theoretical and Applied Genetics 112(5):797–807. doi:10.1007/s00122-005-0176-z.
  • Laperche, A., M. Brancourt-Hulmel, E. Heumez, O. Gardet, E. Hanocq, F. Devienne-Barret, and J. Le Gouis. 2007. Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theoretical and Applied Genetics 115(3):399–415. doi:10.1007/s00122-007-0575-4.
  • Laperche, A., F. Devienne-Barret, O. Maury, J. Le Gouis, and B. Ney. 2006. A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theoretical and Applied Genetics 113(6):1131–46. doi:10.1007/s00122-006-0373-4.
  • Le Gouis, J., D. Béghin, E. Heumez, and P. Pluchard. 2000. Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. European Journal of Agronomy 12(3-4):163–73. doi:10.1016/S1161-0301(00)00045-9.
  • Le Gouis, J., J. X. Fontaine, A. Laperche, E. Heumez, F. Devienne-Barret, M. BrancourtHulmel, F. Dubois, and B. Hirel. 2008. Genetic analysis of wheat nitrogen use effciency: coincidence between QTL for agronomical and physiological traits. 11th Intl. Wheat Genetics Symosium. Proceedings. Brisbane, Australia, 916–918.
  • Lea, P. J., and B. G. Forde. 1994. The use of mutants and transgenic plants to study amino acid metabolism. Plant, Cell and Environment 17(5):541–56. doi:10.1111/j.1365-3040.1994.tb00148.x.
  • Legg, B. J. 2005. Crop improvement technologies for the 21st century. In Yields of Farmed Species: Constraints and Opportunities in the 21st Century, ed. R. Sylvester-Bradley and J. Wiseman, 31–50. Nottingham: Nottingham University Press.
  • Lemaître, T., L. Gaufichon, S. Boutet-Mercey, A. Christ, and C. Masclaux-Daubresse. 2008. Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession. Plant and Cell Physiology 49(7):1056–65. doi:10.1093/pcp/pcn081.
  • Li, P., F. Chen, H. Cai, J. Liu, Q. Pan, Z. Liu, R. Gu, G. Mi, F. Zhang, and L. Yuan. 2015. A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. Journal of Experimental Botany 66(11):3175–88. doi:10.1093/jxb/erv127.
  • Li, W., Y. Wang, M. Okamoto, N. M. Crawford, M. Y. Siddiqi, and A. D. Glass. 2006. Dissection of the AtNRT2. 1: AtNRT2. 2 inducible high-affinity nitrate transporter gene cluster. Plant Physiology 143(1):425–33. doi:10.1104/pp.106.091223.
  • Li, Y. L., X. R. Fan, and Q. R. Shen. 2008. The relationship between rhizosphere nitrification and nitrogen use efficiency in rice plants. Plant, Cell & Environment 31(1):73–85.
  • Lian, X., Y. Xing, H. Yan, C. Xu, X. Li, and Q. Zhang. 2005. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theoretical and Applied Genetics 112(1):85–96. doi:10.1007/s00122-005-0108-y.
  • Lillo, C., U. S. Lea, M. T. Leydecker, and C. Meyer. 2003. Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in constitutive activation of the enzyme in vivo and nitrite accumulation. The Plant Journal 35(5):566–73. doi:10.1046/j.1365-313X.2003.01828.x.
  • Lipson, D., and T. Näsholm. 2001. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128(3):305–16. doi:10.1007/s004420100693.
  • Liu, J., J. Li, F. Chen, F. Zhang, T. Ren, Z. Zhuang, and G. Mi. 2008. Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.). Plant and Soil 305(1-2):253–65. doi:10.1007/s11104-008-9562-z.
  • Liu, K. H., and Y. F. Tsay. 2003. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation . The EMBO Journal 22(5):1005–13. doi:10.1093/emboj/cdg118.
  • Liu, L. H., U. Ludewig, W. B. Frommer, and N. von Wirén. 2003. AtDUR3 encodes a new type of high-affinity urea/H+ symporter in arabidopsis. The Plant Cell 15(3):790–800.
  • Liu, R., H. Zhang, P. Zhao, Z. Zhang, W. Liang, Z. Tian, and Y. Zheng. 2012. Mining of candidate maize genes for nitrogen use efficiency by integrating gene expression and QTL data. Plant Molecular Biology Reporter 30(2):297–308. doi:10.1007/s11105-011-0346-x.
  • Lopez-Bellido, R. J., C. E. Shepherd, and P. B. Barraclough. 2004. Predicting post-anthesis nitrogen requirements of bread wheat with a minolta SPAD meter. European Journal of Agronomy 20(3):313–20. doi:10.1016/S1161-0301(03)00025-X.
  • Loqué, D., and N. von Wirén. 2004. Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany 55(401):1293–305. doi:10.1093/jxb/erh147.
  • Lynch, J. P. 2007. Roots of the second green revolution. Australian Journal of Botany 55(5):493–512. doi:10.1071/BT06118.
  • Maathuis, F. J. 2009. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology 12(3):250–8. doi:10.1016/j.pbi.2009.04.003.
  • Machado, A. T. 1997. Perspectiva do melhoramento genético em milho (Zea mays L.) visando eficiência na utilização do nitrogênio. PhD diss., Universidade Federal Rural do Rio de Janeiro, Rio deJaneiro, Brasil.
  • Machado, A. T., J. R. Magalhaes, R. Magnavaca, and M. Silva. 1992. Determinação da atividade de enzimas envolvidas no metabolismo do nitrogênio em diferentes genótipos de milho. Embrapa Milho e Sorgo-Artigo em Periódico Indexado (ALICE).
  • Malyan, S. K., A. Bhatia, A. Kumar, D. K. Gupta, R. Singh, S. S. Kumar, R. Tomer, O. Kumar, and N. Jain. 2016. Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Science of the Total Environment 572 :874–96. doi:10.1016/j.scitotenv.2016.07.182.
  • Manschadi, A. M., J. Christopher, P. deVoil, and G. L. Hammer. 2006. The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology 33(9):823–37. doi:10.1071/FP06055.
  • Mantelin, S., G. Desbrosses, M. Larcher, T. J. Tranbarger, J. C. Cleyet-Marel, and B. Touraine. 2006. Nitrate-dependent control of root architecture and nitrogen nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta 223(3):591–603. doi:10.1007/s00425-005-0106-y.
  • Marschner, H. 2012. Marschner's mineral nutrition of higher plants. Amsterdam: Academic Press.
  • Martin, A., J. Lee, T. Kichey, D. Gerentes, M. Zivy, C. Tatout, F. Dubois, T. Balliau, B. Valot, M. Davanture., et al. 2006. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. The Plant Cell 18(11):3252–74. doi:10.1105/tpc.106.042689.
  • Masclaux, C., I. Quillere, A. Gallais, and B. Hirel. 2001. The challenge of remobilisation in plant nitrogen economy. A survey of physio‐agronomic and molecular approaches. Annals of Applied Biology 138(1):69–81. doi:10.1111/j.1744-7348.2001.tb00086.x.
  • Masclaux-Daubresse, C., F. Daniel-Vedele, J. Dechorgnat, F. Chardon, L. Gaufichon, and A. Suzuki. 2010. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of Botany 105(7):1141–57. doi:10.1093/aob/mcq028.
  • Matson, P. A., R. Naylor, and I. Ortiz-Monasterio. 1998. Integration of environmental, agronomic, and economic aspects of fertilizer management. Science (New York, N.Y.) 280(5360):112–5.
  • McAllister, C. H., P. H. Beatty, and A. G. Good. 2012. Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnology Journal 10(9):1011–25. doi:10.1111/j.1467-7652.2012.00700.x.
  • Mickelson, S., D. See, F. D. Meyer, J. P. Garner, C. R. Foster, T. K. Blake, and A. M. Fischer. 2003. Mapping of QTL associated with nitrogen storage and remobilization in barley (Hordeum vulgare L.) leaves. Journal of Experimental Botany 54(383):801–12. doi:10.1093/jxb/erg084.
  • Migge, A., E. Carrayol, B. Hirel, and T. W. Becker. 2000. Leaf-specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings. Planta 210(2):252–60. doi:10.1007/PL00008132.
  • Miller, A. J., and M. D. Cramer. 2005. Root nitrogen acquisition and assimilation. In Root physiology: from gene to function, 1–36. Dordrecht: Springer.
  • Moll, R. H., E. J. Kamprath, and W. A. Jackson. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal 74(3):562–4. doi:10.2134/agronj1982.00021962007400030037x.
  • Moubayidin, L., R. Di Mambro, and S. Sabatini. 2009. Cytokinin-auxin crosstalk. Trends in Plant Science 14(10):557–62. doi:10.1016/j.tplants.2009.06.010.
  • Mungur, R., A. D. M. Glass, D. B. Goodenow, and D. A. Lightfoot. 2005. Metabolite fingerprinting in transgenic Nicotiana tabacum altered by the Escherichia coli glutamate dehydrogenase gene. BioMed Research International 2005(2):198–214. doi:10.1155/JBB.2005.198.
  • Mungur, R., A. J. Wood, and D. A. Lightfoot. 2006. Water potential is maintained during water deficit in Nicotiana tabacum expressing the Escherichia coli glutamate dehydrogenase gene. Plant Growth Regulation 50(2-3):231–8. doi:10.1007/s10725-006-9140-4.
  • Muthukumarasamy, R., M. Govindarajan, M. Vadivelu, and G. Revathi. 2006. Nitrogen -fertilizer saving by the inoculation of Gluconacetobacter diazotrophicus and Herbaspirillum sp. in micropropagated sugarcane plants. Microbiological Research 161(3):238–45. doi:10.1016/j.micres.2005.08.007.
  • Nelson, D. R., and P. M. Mele. 2006. The impact of crop residue amendments and lime on microbial community structure and nitrogen-fixing bacteria in the wheat rhizosphere. Soil Research 44(4):319–29. doi:10.1071/SR06022.
  • Nelson, K. A., P. P. Motavalli, and M. Nathan. 2014. Nitrogen fertilizer sources and application timing affects wheat and inter-seeded red clover yields on claypan soils. Agronomy 4(4):497–513. doi:10.3390/agronomy4040497.
  • Obara, M., M. Kajiura, Y. Fukuta, M. Yano, M. Hayashi, T. Yamaya, and T. Sato. 2001. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH‐glutamate synthase in rice (Oryza sativa L.). Journal of Experimental Botany 52(359):1209–17. doi:10.1093/jxb/52.359.1209.
  • Obara, M., T. Takeda, T. Hayakawa, and T. Yamaya. 2011. Mapping quantitative trait loci controlling root length in rice seedlings grown with low or sufficient supply using backcross recombinant lines derived from a cross between Oryza sativa L. and Oryza glaberrima Steud. Soil Science and Plant Nutrition 57(1):80–92. doi:10.1080/00380768.2010.549446.
  • Obara, M., W. Tamura, T. Ebitani, M. Yano, T. Sato, and T. Yamaya. 2010. Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions. Theoretical and Applied Genetics 121(3):535–47. doi:10.1007/s00122-010-1328-3.
  • Oliveira, I. C., T. Brears, T. J. Knight, A. Clark, and G. M. Coruzzi. 2002. Overexpression of cytosolic glutamine synthetase. Relation to N, light, and photorespiration. Plant Physiology 129(3):1170–80. doi:10.1104/pp.020013.
  • Oliveira, L. R. D. 2009. Eficiência de uso de nitrogênio e atividade da nitrato redutase e glutamina sintetase em milho. Tese (Doutorado em Fitotecnia) – Universidade Federal de Viçosa, Viçosa-MG, P 94.
  • Orsel, M., S. Filleur, V. Fraisier, and F. Daniel‐Vedele. 2002. Nitrate transport in plants: which gene and which control?. Journal of Experimental Botany 53(370):825–33. doi:10.1093/jexbot/53.370.825.
  • Ortiz, R., H.-J. Braun, J. Crossa, J. H. Crouch, G. Davenport, J. Dixon, S. Dreisigacker, E. Duveiller, Z. He, J. Huerta., et al. 2008. Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genetic Resources and Crop Evolution 55(7):1095–140. doi:10.1007/s10722-008-9372-4.
  • Ortíz-Castro, R., H. A. Contreras-Cornejo, L. Macías-Rodríguez, and J. López-Bucio. 2009. The role of microbial signals in plant growth and development. Plant Signaling & Behavior 4(8):701–12. doi:10.4161/psb.4.8.9047.
  • Ortiz-Monasterio, R., K. D. Sayre, S. Rajaram, and M. McMahon. 1997. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Science 37(3):898–904. doi:10.2135/cropsci1997.0011183X003700030033x.
  • Parry, M. A. J., P. J. Madgwick, J. F. C. Carvalho, and P. J. Andralojc. 2007. Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. The Journal of Agricultural Science 145 (:1):31. doi:10.1017/S0021859606006666.
  • Peng, S. B., J. L. Huang, X. H. Zhong, J. C. Yang, G. H. Wang, Y. B. Zou, F. S. Zhang, Q. S. Zhu, R. Buresh, and C. Witt. 2002. Challenge and opportunity in improving fertilizer- nitrogen use efficiency of irrigated rice in China. Agricultural Sciences in China 1(7):776–85.
  • Powlson, D. S. 1993. Understanding the soil nitrogen cycle. Soil Use and Management 9(3):86–93. doi:10.1111/j.1475-2743.1993.tb00935.x.
  • Presterl, T., G. Seitz, M. Landbeck, E. M. Thiemt, W. Schmidt, and H. H. Geiger. 2003. Improving nitrogen-use efficiency in european maize. Crop Science 43(4):1259–65. doi:10.2135/cropsci2003.1259.
  • Price, A. H., J. Townend, M. P. Jones, A. Audebert, and B. Courtois. 2002. Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Molecular Biology 48(5/6):683–95.
  • Quarrie, S. A., A. Steed, C. Calestani, A. Semikhodskii, C. Lebreton, C. Chinoy, N. Steele, D. Pljevljakusić, E. Waterman, J. Weyen., et al. 2005. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theoretical and Applied Genetics 110(5):865–80. doi:10.1007/s00122-004-1902-7.
  • Quraishi, U. M., M. Abrouk, F. Murat, C. Pont, S. Foucrier, G. Desmaizieres, C. Confolent, N. Rivière, G. Charmet, E. Paux., et al. 2011. Cross‐genome map based dissection of a nitrogen use efficiency ortho‐metaQTL in bread wheat unravels concerted cereal genome evolution. The Plant Journal 65(5):745–56. doi:10.1111/j.1365-313X.2010.04461.x.
  • Raun, W. R., and G. V. Johnson. 1999. Improving nitrogen use efficiency for cereal production. Agronomy Journal 91(3):357–63. doi:10.2134/agronj1999.00021962009100030001x.
  • Raun, W. R., J. B. Solie, G. V. Johnson, M. L. Stone, R. W. Mullen, K. W. Freeman, W. E. Thomason, and E. V. Lukina. 2002. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal 94(4):815–20. doi:10.2134/agronj2002.8150.
  • Ren, Y., Y. Qian, Y. Xu, C. Zou, D. Liu, X. Zhao, A. Zhang, and Y. Tong. 2017. Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Frontiers in Plant Science 8 :2096.
  • Rentsch, D., S. Schmidt, and M. Tegeder. 2007. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Letters 581(12):2281–9. doi:10.1016/j.febslet.2007.04.013.
  • Ribaut, J. M., Y. Fracheboud, P. Monneveux, M. Banziger, M. Vargas, and C. Jiang. 2007. Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Molecular Breeding 20(1):15–29. doi:10.1007/s11032-006-9041-2.
  • Richardson, A. E., J. M. Barea, A. M. McNeill, and C. Prigent-Combaret. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil 321(1-2):305–39. doi:10.1007/s11104-009-9895-2.
  • Robertson, G. P., and P. M. Vitousek. 2009. Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources 34(1):97–125. doi:10.1146/annurev.environ.032108.105046.
  • Robinson, D. 2001. Root proliferation, nitrate inflow and their carbon costs during nitrogen capture by competing plants in patchy soil. Plant and Soil 232(1/2):41–50.
  • Saal, B., M. von Korff, J. Léon, and K. Pillen. 2011. Advanced-backcross QTL analysis in spring barley: IV. Localization of QTL × nitrogen interaction effects for yield-related traits. Euphytica 177(2):223–39. doi:10.1007/s10681-010-0252-6.
  • Sadras, V. O., and C. Lawson. 2013. Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007. European Journal of Agronomy 46 :34–41. doi:10.1016/j.eja.2012.11.008.
  • Sadras, V. O., and R. A. Richards. 2014. Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen. Journal of Experimental Botany 65(8):1981–95. doi:10.1093/jxb/eru061.
  • Sage, R. F., R. W. Pearcy, and J. R. Seemann. 1987. The N use efficiency of C3 and C4 plants III. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology 85(2):355–9. doi:10.1104/pp.85.2.355.
  • Schjoerring, J. K., S. Husted, G. Mäck, and M. Mattsson. 2002. The regulation of ammonium translocation in plants. Journal of Experimental Botany 53(370):883–90.
  • Semenov, M. A., P. D. Jamieson, and P. Martre. 2007. Deconvoluting nitrogen use efficiency in wheat: a simulation study. European Journal of Agronomy 26(3):283–94. doi:10.1016/j.eja.2006.10.009.
  • Senthilvel, S.,. K. K. Vinod, P. Malarvizhi, and M. Maheswaran. 2008. QTL and QTL × environment effects on agronomic and nitrogen acquisition traits in rice. Journal of Integrative Plant Biology 50(9):1108–17. doi:10.1111/j.1744-7909.2008.00713.x.
  • Shanahan, J. F., J. S. Schepers, D. D. Francis, G. E. Varvel, W. W. Wilhelm, J. M. Tringe, M. R. Schlemmer, and D. J. Major. 2001. Use of remote-sensing imagery to estimate corn grain yield. Agronomy Journal 93(3):583–9. doi:10.2134/agronj2001.933583x.
  • Shrawat, A. K., R. T. Carroll, M. DePauw, G. J. Taylor, and A. G. Good. 2008. Genetic engineering of improved nitrogen use efficiency in rice by the tissue‐specific expression of alanine aminotransferase. Plant Biotechnology Journal 6(7):722–32. doi:10.1111/j.1467-7652.2008.00351.x.
  • Smith, B. E. 2002. Structure. Nitrogenase reveals its inner secrets. Science (New York, N.Y.) 297(5587):1654–5. doi:10.1126/science.1076659.
  • Souza, L. V. D., G. V. Miranda, J. C. C. Galvão, F. R. Eckert, E. E. Mantovani, R. O. Lima, and L. J. M. Guimarães. 2008. Genetic control of grain yield and nitrogen use efficiency in tropical maize. Pesquisa Agropecuária Brasileira 43(11):1517–23. doi:10.1590/S0100-204X2008001100010.
  • Srivastava, S., V. Chaudhry, A. Mishra, P. S. Chauhan, A. Rehman, A. Yadav, N. Tuteja, and C. S. Nautiyal. 2012. Gene expression profiling through microarray analysis in Arabidopsis thaliana colonized by Pseudomonas putida MTCC5279, a plant growth promoting rhizobacterium. Plant Signaling & Behavior 7(2):235–45. doi:10.4161/psb.18957.
  • Steenbjerg, F., and S. T. Jakobsen. 1963. Plant nutrition and yield curves. Soil Science 95(1):69–88. doi:10.1097/00010694-196301000-00012.
  • Sun, J. J., Y. Guo, G. Z. Zhang, M. G. Gao, G. H. Zhang, F. M. Kong, Y. Zhao, and S. S. Li. 2013. QTL mapping for seedling traits under different nitrogen forms in wheat. Euphytica 191(3):317–31. doi:10.1007/s10681-012-0834-6.
  • Sutton, M. A., C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. Van Grinsven, and B. Grizzetti. 2011. The European nitrogen assessment: sources, effects and policy perspectives. Cambridge, UK: Cambridge University Press.
  • Sylvester-Bradley, R., and D. R. Kindred. 2009. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany 60(7):1939–51. doi:10.1093/jxb/erp116.
  • Sylvester-Bradley, R., D. B. Davies, C. Dyer, C. Rahn, and P. A. Johnson. 1996. The value of nitrogen applied to wheat during early development. Nutrient Cycling in Agroecosystems 47(2):173–80. doi:10.1007/BF01991549.
  • Takahashi, M., Y. Sasaki, S. Ida, and H. Morikawa. 2001. Nitrite reductase gene enrichment improves assimilation of NO2 in Arabidopsis. Plant Physiology 126(2):731–41. doi:10.1104/pp.126.2.731.
  • Taylor, L., A. Nunes‐Nesi, K. Parsley, A. Leiss, G. Leach, S. Coates, A. Wingler, A. R. Fernie, and J. M. Hibberd. 2010. Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. The Plant Journal 62(4):641–52. doi:10.1111/j.1365-313X.2010.04179.x.
  • Tong, H. H., L. Chen, W. P. Li, H. W. Mei, Y. Z. Xing, X. Q. Yu, X. Y. Xu, S. Q. Zhang, and L. J. Luo. 2011. Identification and characterization of quantitative trait loci for grain yield and its components under different nitrogen fertilization levels in rice (Oryza sativa L.). Molecular Breeding 28(4):495–509. doi:10.1007/s11032-010-9499-9.
  • Tsay, Y. F., C. C. Chiu, C. B. Tsai, C. H. Ho, and P. K. Hsu. 2007. Nitrate transporters and peptide transporters. FEBS Letters 581(12):2290–300. doi:10.1016/j.febslet.2007.04.047.
  • Uauy, C., A. Distelfeld, T. Fahima, A. Blechl, and J. Dubcovsky. 2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–301. doi:10.1126/science.1133649.
  • UNEP and WHRC. 2007. Reactive nitrogen in the environment: Too much or too little of a good thing. Paris: United Nations Environment Programme.
  • van Noordwijk, M. 1983. Functional interpretation of root densities in the field for nutrient and water uptake. Instituut voor Bodemvruchtbaarheid.
  • Vanoni, M. A., L. Dossena, R. H. Van den Heuvel, and B. Curti. 2005. Structure–function studies on the complex iron–sulfur flavoprotein glutamate synthase: the key enzyme of ammonia assimilation. Photosynthesis Research 83(2):219–38. doi:10.1007/s11120-004-2438-z.
  • Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7(3):737–50. doi:10.1890/1051-0761(1997)007[0737:HAOTGN.2.0.CO;2]
  • Vitousek, P. M., R. Naylor, T. Crews, M. B. David, L. E. Drinkwater, E. Holland, P. J. Johnes, J. Katzenberger, L. A. Martinelli, P. A. Matson., et al. 2009. Nutrient imbalances in agricultural development. Science 324(5934):1519–20. doi:10.1126/science.1170261.
  • Walch-Liu, P., and B. G. Forde. 2008. Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises l‐glutamate‐induced changes in root architecture. The Plant Journal 54(5):820–8. doi:10.1111/j.1365-313X.2008.03443.x.
  • Wang, M. Y., M. Y. Siddiqi, T. J. Ruth, and A. D. Glass. 1993. Ammonium uptake by rice roots (II. Kinetics of 13NH4+ influx across the plasmalemma). Plant Physiology 103(4):1259–67.
  • Wang, Y., B. Fu, L. Pan, L. Chen, X. Fu, and K. Li. 2013. Overexpression of Arabidopsis Dof1, GS1 and GS2 enhanced nitrogen assimilation in transgenic tobacco grown under low-nitrogen conditions. Plant Molecular Biology Reporter 31(4):886–900. doi:10.1007/s11105-013-0561-8.
  • Wei, D., K. Cui, G. Ye, J. Pan, J. Xiang, J. Huang, and L. Nie. 2012. QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice. Plant and Soil 359(1-2):281–95. doi:10.1007/s11104-012-1142-6.
  • Wissuwa, M., M. Mazzola, and C. Picard. 2009. Novel approaches in plant breeding for rhizosphere-related traits. Plant and Soil 321(1-2):409. doi:10.1007/s11104-008-9693-2.
  • Xie, H. L., H. Q. Ji, Z. H. Liu, G. W. Tian, C. L. Wang, Y. M. Hu, and J. H. Tang. 2009. Genetic basis of nutritional content of stover in maize under low nitrogen conditions. Euphytica 165(3):485–93. doi:10.1007/s10681-008-9764-8.
  • Xu, Y., R. Wang, Y. Tong, H. Zhao, Q. Xie, D. Liu, A. Zhang, B. Li, H. Xu, and D. An. 2014. Mapping QTLs for yield and N-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theoretical and Applied Genetics 127(1):59–72. doi:10.1007/s00122-013-2201-y.
  • Yadav, M. R., R. Kumar, C. M. Parihar, R. K. Yadav, S. L. Jat, H. Ram, R. K. Meena, M. Singh, A. P. Verma, U. Kumar, and A. Ghosh. 2017. Strategies for improving nitrogen use efficiency: a review. Agricultural Reviews 38(1):29–40.
  • Yadav, R., K. B. Gaikwad, and R. Bhattacharyya. 2017. Breeding wheat for yield maximization under conservation agriculture. Indian Journal of Genetics and Plant Breeding (The) 77(2):185–98. doi:10.5958/0975-6906.2017.00026.8.
  • Yadav, R., S. S. Singh, N. Jain, G. P. Singh, and K. V. Prabhu. 2010. Wheat production in India: Technologies to face future challenges. Journal of Agricultural Science 2(2):164.
  • Yamaya, T., M. Obara, H. Nakajima, S. Sasaki, T. Hayakawa, and T. Sato. 2002. Genetic manipulation and quantitative‐trait loci mapping for nitrogen recycling in rice. Journal of Experimental Botany 53(370):917–25. doi:10.1093/jexbot/53.370.917.
  • Yanagisawa, S., A. Akiyama, H. Kisaka, H. Uchimiya, and T. Miwa. 2004. Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low- nitrogen conditions. Proceedings of the National Academy of Sciences of the United States of America 101(20):7833–8. doi:10.1073/pnas.0402267101.
  • Yin, L., X. Dai, and M. He. 2018. Delayed sowing improves nitrogen utilization efficiency in winter wheat without impacting yield. Field Crops Research 221 :90–7. doi:10.1016/j.fcr.2018.02.015.
  • Yu, L. H., Z. Q. Miao, G. F. Qi, J. Wu, X. T. Cai, J. L. Mao, and C. B. Xiang. 2014. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Molecular Plant 7(11):1653–69. doi:10.1093/mp/ssu088.
  • Yuan, L., D. Loqué, S. Kojima, S. Rauch, K. Ishiyama, E. Inoue, H. Takahashi, and N. von Wirén. 2007. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell 19(8):2636–52. doi:10.1105/tpc.107.052134.
  • Zhang, N., Y. Gibon, A. Gur, C. Chen, N. Lepak, M. Höhne, Z. Zhang, D. Kroon, H. Tschoep, M. Stitt, and E. S. Buckler. 2010. Fine quantitative trait loci mapping of carbon and nitrogen metabolism enzyme activities and seedling biomass in the intermated maize IBM mapping population. Plant Physiology 154:1753–65.
  • Zhang, Y., L. Tan, Z. Zhu, L. Yuan, D. Xie, and C. Sun. 2015. TOND1 confers tolerance to nitrogen deficiency in rice. The Plant Journal: for Cell and Molecular Biology 81(3):367–76. doi:10.1111/tpj.12736.
  • Zhao, C. F., L. H. Zhou, Y. D. Zhang, Z. Zhu, T. Chen, Q. Y. Zhao, S. Yao, X. Yu, and C. L. Wang. 2014. QTL mapping for seedling traits associated with low‐nitrogen tolerance using a set of advanced backcross introgression lines of rice. Plant Breeding 133(2):189–95. doi:10.1111/pbr.12123.
  • Zhou, Y., Y. Tao, D. Tang, J. Wang, J. Zhong, Y. Wang, Q. Yuan, X. Yu, Y. Zhang, Y. Wang, and G. Liang. 2017. Identification of QTL associated with nitrogen uptake and nitrogen use efficiency using high throughput genotyped CSSLs in rice (Oryza sativa L.). Frontiers in Plant Science 8:1166.
  • Zimmermann, P., and U. Zentgraf. 2005. The correlation between oxidative stress and leaf senescence during plant development. Cellular and Molecular Biology Letters 10(3):515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.