128
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Mechanisms of potassium uptake efficiency and dynamics in the rhizosphere of safflower and sunflower in different soils

, , &
Pages 2459-2483 | Received 20 Oct 2018, Accepted 28 Jun 2019, Published online: 20 Aug 2019

References

  • Abbadi, J. 2007. Importance of nutrient supply (N, P, K) for yield formation and nutrient use efficiency of safflower (Carthamus tinctorius L.) compared to sunflower (Helianthus annuus L.) including an assessment to grow safflower under north German conditions. Beuren Stuttgart, Germany: Grauer Publisher.
  • Abbadi, J. 2017a. Evaluation of mechanisms of phosphorus use efficiency in traditional wheat cultivars for sustainable cropping. Journal of Food Security 5(6):197–211. doi: 10.12691/jfs-5-6-1.
  • Abbadi, J. 2017b. Potassium use efficiency of safflower and sunflower grown in different soils. World Journal of Agricultural Research 5(4):212–57. doi: 10.12691/wjar-5-5-1.
  • Abbadi, J. 2017c. Phosphorous use efficiency of safflower and sunflower grown in different soils. World Journal of Agricultural Research 5(4):212–20. doi: 10.12691/wjar-5-4-3.
  • Abbadi, J., K. Dittert, B. Steingrobe, and N. Claassen. 2017. Mechanisms of phosphorous uptake efficiency of safflower and sunflower grown in different soils. Research in Plant Sciences 5(1):26–42. doi: 10.12691/plant-5-1-4.
  • Abbadi, J., and J. Gerendás. 2009. Nitrogen use efficiency of safflower as compared to sunflower. Journal of Plant Nutrition 32(6):929–45. doi: 10.1080/01904160902870705.
  • Abbadi, J., and J. Gerendás. 2015. Phosphorus use efficiency of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Journal of Plant Nutrition 38(7):1121–42. doi: 10.1080/01904167.2014.983115.
  • Abbadi, J., J. Gerendás, and B. Sattelmacher. 2008. Effects of potassium supply on growth and yield of safflower compared to sunflower. Journal of Plant Nutrition and Soil Science 171(2):272–80. doi: 10.1002/jpln.200700193.
  • Adams, E., and R. Shin. 2014. Transport, signaling, and homeostasis of potassium and sodium in plants. Journal of Integrative Plant Biology 56(3):231–49. doi: 10.1111/jipb.12159.
  • Adams, F. 1974. Soil solution. In The plant root and its environment, ed. E. W. Carson, 441–81. Charlottesville: University of Press of Virginia.
  • Almeida, D. M., M. M. Oliveira, and N. J. M. Saibo. 2017. Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genetics and Molecular Biology 40(1):326–45. doi: 10.1590/1678-4685-gmb-2016-0106.
  • Anschütz, U., D. Becker, and S. Shabala. 2014. Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology 171(9):670–87. doi: 10.1016/j.jplph.2014.01.009.
  • Barber, S. A. 1984. Soil nutrient bioavailability. New York: Wiley.
  • Bhadoria, P. S., H. El Dessougi, H. Liebersbach, and N. Claassen. 2004. Phosphorus uptake kinetics, size of root system and growth of maize and groundnut in solution culture. Plant and Soil 262(1/2):327–36. doi: 10.1023/B:PLSO.0000037051.16411.03.
  • Bhadoria, P. S., S. Singh, and N. Claassen. 2001. Phosphorus efficiency of wheat, maize and groundnut grown in low phosphorus supplying soil. In Plant nutrition: Food security and sustainability of agro-ecosystems, ed. W. J. Horst, 530–1. Dordrecht: Kluwer Academic Publishers.
  • Bishopp, A., and J. P. Lynch. 2015. The hidden half of crop yields. Nature Plants 1(8):1–2. doi: 10.1038/nplants.2015.117.
  • Britzke, D., L. S. da Silva, D. F. Moterle, D. Rheinheimer, and E. C. Bortoluzzi. 2012. A study of potassium dynamics and mineralogy in soils from subtropical Brazilian lowlands. Journal of Soils and Sediments 12(2):185–97. doi: 10.1007/s11368-011-0431-7.
  • Castañeda Ortiz, N. 2006. Phosphorus efficiency of Arachis pintoi genotypes and possible mechanisms for tolerance to low soil P supply. Ph.D. diss., Georg-August-University of Göttingen.
  • Claassen, N., L. Hendriks, and A. Jungk. 1981. Erfassung der Mineralstoffverteilung im Wurzelnahen Boden dürch Autoradiographie (Detection of mineral distribution in the rhizosphere by autoradiography). Journal of Plant Nutrition and Soil Science 144(22):533–45. doi: 10.1002/jpln.19811440309.
  • Claassen, N., and A. Jungk. 1984. Bedeutung von Kaliumaufnahmerate, Würzelwachstum und Würzelhaaren für das Kaliumaneignungsvermögen verschiedener Pflanzenarten (Significance of potassium uptake rate, root growth and root hairs for the potassium acquisition ability of different plant species). Journal of Plant Nutrition and Soil Science 147(3):276–89. doi: 10.1002/jpln.19841470303.
  • Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Díaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, et al. 2003. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51(4):335–80. doi: 10.1071/BT02124.
  • Dessougi, H., N. Claassen, and B. Steingrobe. 2002. Potassium efficiency mechanisms of wheat, barley, and sugar beet grown on a K fixing soil under controlled conditions. Journal of Plant Nutrition and Soil Science 165(6):732–7. doi: 10.1002/jpln.200290011.
  • Engels, C., and H. Marschner. 1993. Influence of the form of nitrogen supply on root uptake and translocation of cations in the xylem exudate of maize (Zea mays L.). Journal of Experimental Botany 44(11):1695–701. doi: 10.1093/jxb/44.11.1695.
  • Fageria, N. K., and A. Moreira. 2011. The role of mineral nutrition on root growth of crop plants. In Advances in agronomy, ed. D. L. Sparks, vol. 110, 251–331. Burlington: Academic Press.
  • Gardner, R. C. 2003. Genes for magnesium transport. Current Opinion in Plant Biology 6(3):263–7. doi: 10.1016/S1369-5266(03)00032-3.
  • Gerendás, J., J. Abbadi, and B. Sattelmacher. 2008. Potassium efficiency of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Journal of Plant Nutrition and Soil Science 171(3):431–9. doi: 10.1002/jpln.200700193.
  • Giehl, R. F. H., and N. von Wirén. 2014. Root nutrient foraging. Plant Physiology 166(2):509–17. doi: 10.1104/pp.114.245225.
  • Godfray, H. C. J., J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas, and C. Toulmin. 2010. Food security: The challenge of feeding 9 billion people. Science 327(5967):812–8. doi: 10.1126/science.1185383.
  • Gransee, A., and H. Führs. 2013. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil 368(1–2):5–21. doi: 10.1007/s11104-012-1567-y.
  • Grimme, H., and K. Nemeth. 1979. The evaluation of soil K status by means of soil testing. In Congress of the 11th International Potash Institute, 99–108. Bern: International Potash Institute.
  • Guillou, M., and G. Matheron. 2014. The world’s challenge: Feeding 9 billion people. Berlin: Springer.
  • Hunt, H., and J. A. Burnett. 1973. The effects of light intensity and external potassium level on root/shoot ratio and rates of potassium uptake in perennial ryegrass (Lolium perene L.). Annals of Botany 37(3):519–37. doi: 10.1093/oxfordjournals.aob.a084718.
  • Jia, Y. B., X. E. Yang, Y. Feng, and G. Jilani. 2008. Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency. Journal of Zhejiang University Science B 9(5):427–34. doi: 10.1631/jzus.B0710636.
  • Johnston, A. E. 2001. Principles of Crop Nutrition for Sustainable Food Production. Proceedings, vol. 459. York, UK: International Fertilizer Society.
  • Jungk, A. 2001. Root hairs and the acquisition of plant nutrients from soil. Journal of Plant Nutrition and Soil Science 164(2):121–9. doi: 10.1002/1522-2624(200104)164:2 < 121::AID-JPLN121 > 3.0.CO;2-6.
  • Jungk, A., and N. Claassen. 1986. Availability of phosphate and potassium as the result of interactions between root and soil in the rhizosphere. Z. Pflanzenernähr. Bodenkd. 149(4):411–27. doi: 10.1002/jpln.19861490406.
  • Koevoets, I. T., J. H. Venema, J. T. M. Elzenga, and C. Testerink. 2016. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Frontiers in Plant Science 7:1335. doi: 10.3389/fpls.2016.01335.
  • Kuchenbuch, R. 1983. Die Bedeutung von Ionenaustauschprozessen im wurzelnahen Boden für die Pflanzenverfiigbarkeit von Kalium (The importance of ion exchange processes in the rhizosphere of plants in terms of potassium availability). PhD Diss. Gottingen.
  • Lambers, H., M. W. Shane, M. D. Cramer, S. J. Pearse, and E. J. Veneklaas. 2006. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Annals of Botany 98(4):693–713. doi: 10.1093/aob/mcl114.
  • Liu, Z. H., B. H. Liu, H. M. Zhang, G. L. Li, Y. M. Zhang, and X. L. Guo. 2014. The physiological basis of heterosis for potassium uptake of hybrid Millet. American Journal of Plant Sciences 5(13):2006–14. doi: 10.4236/ajps.2014.513215.
  • Lynch, J. P., A. F. Lynch, and P. Jonathan. 2007. Roots of the second green revolution. Australian Journal of Botany 55(5):493–512. doi: 10.1071/BT06118.
  • Marschner, H. 2012. Marschner’s mineral nutrition of higher plants. London: Academic Press.
  • Nieves-Cordones, M., F. R. Al Shiblawi, and H. Sentenac. 2016. Roles and transport of sodium and potassium in plants. Metal Ions in Life Sciences 16:291–324. doi: 10.1007/978-3-319-21756-7_9.
  • Niklas, K. J., and B. J. Enquist. 2002. On the vegetative biomass partitioning of seed plant leaves, stems, and roots. The American Naturalist 159(5):482–97. doi: 10.1086/339459.
  • Oliveira, E. M. M., H. A. Ruiz, V. Alvarez, V. Hugo, P. A. Ferreira, F. O. Costa, and I. C. C. Almeida. 2010. Nutrient supply by mass flow and diffusion to maize plants in response to soil aggregate size and water potential. Revista Brasileira De Ciência Do Solo 34(2):317–28. doi: 10.1590/S0100-06832010000200005.
  • Osman, K. T. 2013. Soil as a part of the lithosphere. In Soils. Dordrecht. Springer
  • Passioura, J. B. 2002. Soil conditions and plant growth. Plant, Cell and Environment 25(2):311–8. doi: 10.1046/j.0016-8025.2001.00802.x.
  • Pearse, S. J., E. J. Veneklaas, G. Cawthray, M. D. A. Bolland, and H. Lambers. 2006. Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus, despite releasing fewer carboxylates into the rhizosphere. New Phytologist 169(3):515–24. doi: 10.1111/j.1469-8137.2005.01614.x.
  • Pissarek, H. P. 1973. Zur Entwicklung der Kalium- Mangelsymptome von Sommerraps (On the development of potassium deficiency symptoms of summer rape). Journal of Plant Nutrition and Soil Science 136(1):1–19. doi: 10.1002/jpln.19731360102.
  • Pretty, J., and Z. P. Bharucha. 2014. Sustainable intensification in agricultural systems. Annals of Botany 114(8):1571–96. doi: 10.1093/aob/mcu205.
  • Rao, I. M., J. W. Miles, S. E. Beebe, and W. J. Horst. 2016. Root adaptations to soils with low fertility and aluminium toxicity. Annals of Botany 118(4):593–605. doi: 10.1093/aob/mcw073.
  • Rashmi, I., A. K. Biswas, K. C. Shinogi, S. Kala, K. S. Karthika, S. P. Prabha, and Y. Sao. 2017. Phosphorus movement and vertical distribution in four soil orders of India: Column leaching experiment. International Journal of Current Microbiology and Applied Sciences 6(4):1919–30. doi: 10.20546/ijcmas.2017.604.229.
  • Rengel, Z., and P. Marschner. 2005. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytologist 168(2):305–312. doi: 10.1111/j.1469-8137.2005.01558.x.
  • Sadana, U. S., and N. Claassen. 1999. Potassium efficiency and dynamics in the rhizosphere of wheat, maize and sugar beet evaluated by a mechanistic model. Journal of Plant Nutrition 22(6):939–50. doi: 10.1080/01904169909365684.
  • Samal, D., J. L. Kovar, B. Steingrobe, U. S. Sadana, P. S. Bhadoria, and N. Claassen. 2010. Potassium uptake efficiency and dynamics in the rhizosphere of maize (Zea mays L.), wheat (Triticum aestivum L.), and sugar beet (Beta vulgaris L.) evaluated with a mechanistic model. Plant and Soil 332(1–2):105–21. doi: 10.1007/s11104-009-0277-6.
  • Sattelmacher, B., W. J. Horst, and H. C. Becker. 1994. Factors that contribute to genetic variation for nutrient efficiency of crop plants. Z. Pflanzenernähr. Bodenkd. 157(3):215–24. doi: 10.1002/jpln.19941570309.
  • Schachshabel, P. 1954. Plant-available magnesium in soil and its determination. Z. Pflanzenernähr. Düng. Bodenkd. 67(1):9–23. doi: 10.1002/jpln.19540670103.
  • Schachtman, D. P., and R. Shin. 2007. Nutrient sensing and signaling: NPKS. Annual Review of Plant Biology 58(1):47–69. doi: 10.1146/annurev.arplant.58.032806.103750.
  • Schenk, M. K. 2006. Nutrient efficiency of vegetable crops. Acta Horticulturae 700:21–34. doi: 10.17660/ActaHortic.2006.700.1.
  • Schüller, H. 1969. Die CAL-Methode, Eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Böden (The CAL method, a new method for determining plant-available phosphate in soils). Z. Pflanzenernähr. Bodenkd. 123(1):48–63. doi: 10.1002/jpln.19691230106.
  • Sparks, D. L., and P. M. Huang. 1985. Physical chemistry of soil potassium. In Potassium in agriculture, ed. R. D. Munson, 201–76. Madison, WI: American Society of Agronomy.
  • Steingrobe, B. 2001. Root renewal of sugar beet as a mechanism of P uptake efficiency. Journal of Plant Nutrition and Soil Science 164(5):533–9. doi: 10.1002/1522-2624(200110)164:5 < 533::AID-JPLN533 > 3.0.CO;2-D.
  • Steingrobe, B., and N. Claassen. 2000. Potassium dynamics in the rhizosphere and K efficiency of crops. Journal of Plant Nutrition and Soil Science 163(1):101–6. doi: 10.1002/(SICI)1522-2624(200002)163:1 < 101::AID-JPLN101 > 3.0.CO;2-J.
  • Syers, J. K., A. E. Johnston, and D. Curtin. 2008. Efficiency of soil and fertilizer phosphorus use. Rome, Italy: FAO Fertilizer and Plant Nutrition Bulletin 18.
  • Tennant, D. 1975. A test of a modified line intersect method of estimating root length. The Journal of Ecology 63(3):995–1001. doi: 10.2307/2258617.
  • Ticconi, C. A., R. D. Lucero, S. Sakhonwasee, A. W. Adamson, A. Creff, L. Nussaume, T. Desnos, and S. Abel. 2009. ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proceedings of the National Academy of Sciences of the United States of America 106(33):14174–9. doi: 10.1073/pnas.0901778106.
  • Tilman, D., C. Balzer, J. Hill, and B. L. Befort. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America 108(50):20260–4. doi: 10.1073/pnas.1116437108.
  • Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418(6898):671–7. doi: 10.1038/nature01014.
  • Tinker, P. B., and P. H. Nye. 2000. Solute movement in the rhizosphere. Oxford: Blackwell Scientific.
  • Trehan, S. P., and R. C. Sharma. 2005. Differences in phosphorus use efficiency in potato genotypes. Advances in Horticultural Science 19(1):13–20.
  • Tron, S., G. Bodner, F. Laio, L. Ridolfi, and D. Leitner. 2015. Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological Modelling 312:200–10. doi: 10.1016/j.ecolmodel.2015.05.028.
  • United States Census Bureau. 2018. International population estimates and projections: 2015. https://www.census.gov/newsroom/press-releases/2015/cb15-tps53.html (accessed October 16, 2018).
  • Wang, Y., and W. H. Wu. 2013. Potassium transport and signaling in higher plants. Annual Review of Plant Biology 64(1):451–76. doi: 10.1146/annurev-arplant-050312-120153.
  • Wang, Y., X. Zhang, X. Liu, X. Zhang, L. Shao, H. Sun, and S. Chen. 2013. The effects of nitrogen supply and water regime on instantaneous WUE, time-integrated WUE and carbon isotope discrimination in winter wheat. Field Crops Research 144:236–44. doi: 10.1016/j.fcr.2013.01.021.
  • White, P. J., J. P. Hammond, G. J. King, H. C. Bowen, R. M. Hayden, M. C. Meacham, W. P. Spracklen, and M. R. Broadley. 2010. Genetic analysis of potassium use efficiency in Brassica oleracea. Annals of Botany 105(7):1199–210. doi: 10.1093/aob/mcp253.
  • Williams, R. F. 1948. The effect of phosphorus supply on the rates of intake of phosphorus and nitrogen upon certain aspects of phosphorus metabolism in gramineous plants. Australian Journal of Biological Sciences 1(3):333–61. doi: 10.1071/BI9480333.
  • Yang, X. E., H. Li, G. J. D. Kirk, and A. Dobbermann. 2005. Room-induced changes of potassium in the rhizosphere of lowland rice. Communications in Soil Science and Plant Analysis 36(13–14):1947–63. doi: 10.1081/CSS-200062529.
  • Zaehle, S., and A. D. Friend. 2010. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Global Biogeochemical Cycles 24(1):1–13. doi: 10.1029/2009GB003522.
  • Zahoor, R., W. Zhao, M. Abid, H. Dong, and Z. Zhou. 2017. Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress. Journal of Plant Physiology 215:30–8. doi: 10.1016/j.jplph.2017.05.001.
  • Zahoor, R., W. Zhao, H. Dong, J. L. Snider, M. Abid, B. Iqbal, and Z. Zhou. 2017. Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry 119:21–32. doi: 10.1016/j.plaphy.2017.08.011.
  • Zörb, C., M. Senbayram, and E. Peiter. 2014. Potassium in agriculture—Status and perspectives. Journal of Plant Physiology 171(9):656–669. doi: 10.1016/j.jplph.2013.08.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.