1,350
Views
39
CrossRef citations to date
0
Altmetric
Reviews

Encapsulation of plant growth promoting Rhizobacteria—prospects and potential in agricultural sector: a review

ORCID Icon, , , & ORCID Icon
Pages 2600-2623 | Received 21 Feb 2019, Accepted 04 Jun 2019, Published online: 30 Aug 2019

References

  • Aebischer, P., E. Buchser, JM. Joseph, J. Favre, N. De Tribolet, M. Lysaght, S. Rudnick, and M. Goddard. 1994a. Transplantation in humans of encapsulated xenogeneic cells without immunosuppression: A preliminary report. Transplantation 58 (11):1275–7. doi: 10.1097/00007890-199412150-00025.
  • Aebischer, P., M. Goddard, A. P. Signore, and R. L. Timpson. 1994b. Functional recovery in hemiparkinsonian primates transplanted with polymer-encapsulated PC12 cells. Experimental Neurology 126 (2):151–8. doi: 10.1006/exnr.1994.1053.
  • American Chemistry Council. 2017. The basics: Polymer definition and properties. https://plastics.americanchemistry.com/plastics/The-Basics/.
  • Amine, K. M., C. P. Champagne, S. Salmieri, M. Britten, D. St-Gelais, P. Fustier, and M. Lacroix. 2014. Effect of palmitoylated alginate microencapsulation on viability of Bifidobacterium longum during freeze-drying. LWT Food Science and Technology 56 (1):111–17. doi: 10.1016/j.lwt.2013.11.003.
  • Anandhakumar, S., G. Krishnamoorthy, K. M. Ramkumar, and A. M. Raichur. 2017. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Materials Science and Engineering: C 70:378–85. doi: 10.1016/j.msec.2016.09.003.
  • Armada, E., G. Portela, A. Roldán, and R. Azcón. 2014. Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma 232:640–8. doi: 10.1016/j.geoderma.2014.06.025.
  • Asghari, F., M. Samiei, K. Adibkia, A. Akbarzadeh, and S. Davaran. 2017. Biodegradable and biocompatible polymers for tissue engineering application: A review. Artificial Cells, Nanomedicine, and Biotechnology 45 (2):185–92. doi: 10.3109/21691401.2016.1146731.
  • Baker, D. A., and T. G. Rials. 2013. Recent advances in low‐cost carbon fiber manufacture from lignin. Journal of Applied Polymer Science 130 (2):713–28. doi: 10.1002/app.39273.
  • Baran, E. T., J. F. Mano, and R. L. Reis. 2004. Starch–chitosan hydrogels prepared by reductive alkylation cross-linking. Journal of Materials Science: Materials in Medicine 15 (7):759–65. doi: 10.1023/B:JMSM.0000032815.86972.5e.
  • Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances 16 (4):729–70. doi: 10.1016/S0734-9750(98)00003-2.
  • Bashan, Y., J.-P. Hernandez, L. A. Leyva, and M. Bacilio. 2002. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biology and Fertility of Soils 35 (5):359–68. doi: 10.1007/s00374-002-0481-5.
  • Bekhit, M., L. Sánchez-González, G. Ben Messaoud, and S. Desobry. 2016. Encapsulation of Lactococcus lactis subsp. lactis on alginate/pectin composite microbeads: Effect of matrix composition on bacterial survival and nisin release. Journal of Food Engineering 180:1–9. doi: 10.1016/j.jfoodeng.2016.01.031.
  • Benczedi, D., and A. Blake. 1999. Encapsulation and the controlled release of flavours. Leatherhead Food RA Food Industry Journal 2:36–48.
  • Besseau, L., B. Coulomb, C. Lebreton-Decoster, and M.-M. Giraud-Guille. 2002. Production of ordered collagen matrices for three-dimensional cell culture. Biomaterials 23 (1):27–36. doi: 10.1016/S0142-9612(01)00075-8.
  • Blinkov, E. A., E. A. Tsavkelova, and O. V. Selitskaya. 2014. Auxin production by the Klebsiella planticola strain TSKhA-91 and its effect on development of cucumber (Cucumis sativus L.) seeds. Microbiology 83 (5):531–8. doi: 10.1134/S0026261714050063.
  • Bolduc, M.-P., Y. Raymond, P. Fustier, C. P. Champagne, and J.-C. Vuillemard. 2006. Sensitivity of bifidobacteria to oxygen and redox potential in non-fermented pasteurized milk. International Dairy Journal 16 (9):1038–48. doi: 10.1016/j.idairyj.2005.10.030.
  • Bouissou, C., J. J. Rouse, R. Price, and C. F. Van der Walle. 2006. The influence of surfactant on PLGA microsphere glass transition and water sorption: Remodeling the surface morphology to attenuate the burst release. Pharmaceutical Research 23 (6):1295–305. doi: 10.1007/s11095-006-0180-2.
  • Burdman, S., Y. Okon, and E. Jurkevitch. 2000. Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Critical Reviews in Microbiology 26 (2):91–110. doi: 10.1080/10408410091154200.
  • Calvo‐Flores, F. G., and J. A. Dobado. 2010. Lignin as renewable raw material. ChemSusChem 3 (11):1227–35. doi: 10.1002/cssc.201000157.
  • Campos, D. C., F. Acevedo, E. Morales, J. Aravena, V. Amiard, M. A. Jorquera, N. G. Inostroza, and M. Rubilar. 2014. Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules. World Journal of Microbiology & Biotechnology 30 (9):2371–8. doi: 10.1007/s11274-014-1662-8.
  • Capela, P., T. K. C. Hay, and N. P. Shah. 2006. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International 39 (2):203–11. doi: 10.1016/j.foodres.2005.07.007.
  • Capron, I., and B. Cathala. 2013. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 14 (2):291–6. doi: 10.1021/bm301871k.
  • Carpenter, S. R., J. J. Cole, M. L. Pace, R. Batt, W. A. Brock, T. Cline, J. Coloso, J. R. Hodgson, J. F. Kitchell, D. A. Seekell, et al. 2011. Early warnings of regime shifts: A whole-ecosystem experiment. Science 332 (6033):1079–82. doi: 10.1126/science.1203672.
  • Cascone, MG., M. Tricoli, P. Cerrai, and R. S. Del Guerra. 1993. Cell cultures in the biocompatibility study of synthetic materials. Cytotechnology 11 (S1):S137–S139. doi: 10.1007/BF00746079.
  • Chandramouli, V., K. Kailasapathy, P. Peiris, and M. Jones. 2004. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. Journal of Microbiological Methods 56 (1):27–35. doi: 10.1016/j.mimet.2003.09.002.
  • Chang, D. W., X. M. Zhang, and J. M. Kim. 2014. Encapsulation of vitamin E in glassy carbohydrates by extrusion. Advanced Materials Research 842:95–9. doi: 10.4028/www.scientific.net/AMR.842.95.
  • Chia, S.-M., K. W. Leong, J. Li, X. Xu, K. Zeng, P.-N. Er, S. Gao, and H. Yu. 2000. Hepatocyte encapsulation for enhanced cellular functions. Tissue Engineering 6 (5):481–95. doi: 10.1089/107632700750022134.
  • Choudhary, D. K., K. P. Sharma, and R. K. Gaur. 2011. Biotechnological perspectives of microbes in agro-ecosystems. Biotechnology Letters 33 (10):1905–10. doi: 10.1007/s10529-011-0662-0.
  • Dautzenberg, H., U. Schuldt, G. Grasnick, P. Karle, P. Müller, M. Löhr, M. Pelegrin, M. Piechaczyk, K. V. Rombs, W. H. Günzburg, et al. 1999. Development of cellulose sulfate‐based polyelectrolyte complex microcapsules for medical applications. Annals of the New York Academy of Sciences 875 (1):46–63. doi: 10.1111/j.1749-6632.1999.tb08493.x.
  • de Vos, P., H. A. Lazarjani, D. Poncelet, and M. M. Faas. 2014. Polymers in cell encapsulation from an enveloped cell perspective. Advanced Drug Delivery Reviews 67:15–34. doi: 10.1016/j.addr.2013.11.005.
  • Dey, R., K. K. Pal, D. M. Bhatt, and S. M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research 159 (4):371–94. doi: 10.1016/j.micres.2004.08.004.
  • Diwan, M., and T. G. Park. 2003. Stabilization of recombinant interferon-α by pegylation for encapsulation in PLGA microspheres. International Journal of Pharmaceutics 252 (1–2):111–22.
  • Du, X., J. Li, and M. E. Lindström. 2014. Modification of industrial softwood Kraft lignin using Mannich reaction with and without phenolation pretreatment. Industrial Crops and Products 52:729–35. doi: 10.1016/j.indcrop.2013.11.035.
  • Ebnesajjad, S. 2012. Handbook of biopolymers and biodegradable plastics: Properties, processing and applications. Amsterdam, The Netherlands: William Andrew.
  • Egamberdieva, D., D. Jabborova, and G. Berg. 2016. Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant and Soil 405 (1–2):35–45. doi: 10.1007/s11104-015-2661-8.
  • Emerich, D. F., J. P. Hammang, E. E. Baetge, and S. R. Winn. 1994. Implantation of polymer-encapsulated human nerve growth factor-secreting fibroblasts attenuates the behavioral and neuropathological consequences of quinolinic acid injections into rodent striatum. Experimental Neurology 130 (1):141–50. doi: 10.1006/exnr.1994.1193.
  • Faisal, M. 2013. Inoculation of plant growth promoting bacteria Ochrobactrum intermedium, Brevibacterium sp. and Bacillus cereus induce plant growth parameters. Journal of Applied Biotechnology 1 (1):45. doi: 10.5296/jab.v1i1.3698.
  • Fleming, A. J., and M. V. Sefton. 2003. Viability of hydroxyethyl methacrylate–methyl methacrylate-microencapsulated PC12 cells after omental pouch implantation within agarose gels. Tissue Engineering 9 (5):1023–36. doi: 10.1089/107632703322495664.
  • Fortin, M.-H., C. P. Champagne, D. St-Gelais, M. Britten, P. Fustier, and M. Lacroix. 2011. Effect of time of inoculation, starter addition, oxygen level and salting on the viability of probiotic cultures during Cheddar cheese production. International Dairy Journal 21 (2):75–82. doi: 10.1016/j.idairyj.2010.09.007.
  • Fujii, M., H. Morita, J. Hiraki, and M. Hatakeyama. 1989. U.S. Patent No. 4,867,974. Washington, DC: U.S. Patent and Trademark Office.
  • Gagné-Bourque, F., M. Xu, M. J. Dumont, and S. Jabaji. 2015. Pea protein alginate encapsulated Bacillus subtilis B26, a plant biostimulant, provides controlled release and increased storage survival. Journal of Biofertilizers & Biopesticides 06(02). doi: 10.4172/jbfbp.1000157.
  • Gharapetian, H., N. A. Davies, and A. M. Sun. 1986. Encapsulation of viable cells within polyacrylate membranes. Biotechnology and Bioengineering 28 (10):1595–600. doi: 10.1002/bit.260281019.
  • Ghormade, V., M. V. Deshpande, and K. M. Paknikar. 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances 29 (6):792–803. doi: 10.1016/j.biotechadv.2011.06.007.
  • Gill, I., and A. Ballesteros. 2000a. Bioencapsulation within synthetic polymers (Part 1): Sol–gel encapsulated biologicals. Trends in Biotechnology 18 (7):282–96. doi: 10.1016/S0167-7799(00)01457-8.
  • Gill, I., and A. Ballesteros. 2000b. Bioencapsulation within synthetic polymers (Part 2): Non-sol–gel protein–polymer biocomposites. Trends in Biotechnology 18 (11):469–79. doi: 10.1016/S0167-7799(00)01493-1.
  • Godward, G., K. Sultana, K. Kailasapathy, P. Peiris, R. Arumugaswamy, and N. Reynolds. 2000. The importance of strain selection on the viability and survival of probiotic bacteria in dairy foods. Milchwissenschaft 55 (8):441–5.
  • Gombotz, W. R., and S. F. Wee. 2012. Protein release from alginate matrices. Advanced Drug Delivery Reviews 64:194–205. doi: 10.1016/j.addr.2012.09.007.
  • Goubet, I., J.-L. Le Quere, and A. J. Voilley. 1998. Retention of aroma compounds by carbohydrates: Influence of their physicochemical characteristics and of their physical state. A review. Journal of Agricultural and Food Chemistry 46 (5):1981–90. doi: 10.1021/jf970709y.
  • Govender, M., Y. E. Choonara, P. Kumar, L. C. Du Toit, S. van Vuuren, and V. Pillay. 2014. A review of the advancements in probiotic delivery: Conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech 15 (1):29–43. doi: 10.1208/s12249-013-0027-1.
  • Guo, L., Z. Wu, A. Rasool, and C. Li. 2012. Effects of free and encapsulated co-culture bacteria on cotton growth and soil bacterial communities. European Journal of Soil Biology 53:16–22. doi: 10.1016/j.ejsobi.2012.08.003.
  • He, Y., Z. Wu, L. Tu, Y. Han, G. Zhang, and C. Li. 2015. Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Applied Clay Science 109:68–75. doi: 10.1016/j.clay.2015.02.001.
  • He, Y., Z. Wu, L. Tu, and C. Shan. 2017. Effect of encapsulated pseudomonas putida Rs-198 strain on alleviating salt stress of cotton. Journal of Plant Nutrition 40 (8):1180–9. doi: 10.1080/01904167.2016.1264595.
  • He, Y., Z. Wu, B.-C. Ye, J. Wang, X. Guan, and J. Zhang. 2016. Viability evaluation of alginate-encapsulated Pseudomonas putida Rs-198 under simulated salt-stress conditions and its effect on cotton growth. European Journal of Soil Biology 75:135–41. doi: 10.1016/j.ejsobi.2016.05.002.
  • Herrmann, L., and D. Lesueur. 2013. Challenges of formulation and quality of biofertilizers for successful inoculation. Applied Microbiology and Biotechnology 97 (20):8859–73. doi: 10.1007/s00253-013-5228-8.
  • Hudson, S. M., and D. W. Jenkins. 2001. Chitin and chitosan. In Encyclopedia of polymer science and technology.
  • Hyndman, C. L., A. F. Groboillot, D. Poncelet, C. P. Champagne, and R. J. Neufeld. 2007. Microencapsulation of Lactococcus lactis within cross‐linked gelatin membranes. Journal of Chemical Technology & Biotechnology 56 (3):259–63. doi: 10.1002/jctb.280560307.
  • Jacquot, M., A. Madène, and S. Desobry. 2007. Encapsulation d'arômes Alimentaires. Microencapsulation: Des Sciences Aux Technologies y.
  • Jang, H., Y.-K. Kim, H. Huh, and D.-H. Min. 2014. Facile synthesis and intraparticle self-catalytic oxidation of dextran-coated hollow Au-Ag nanoshell and its application for chemo-thermotherapy. ACS Nano 8 (1):467–75. doi: 10.1021/nn404833b.
  • Jenkins, D. W., and S. M. Hudson. 2001. Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chemical Reviews 101 (11):3245–74. doi: 10.1021/cr000257f.
  • Jeyanthi, R., and K. Panduranga Rao. 1990. In vivo biocompatibility of collagenpoly (hydroxyethyl methacrylate) hydrogels. Biomaterials 11 (4):238–43. doi: 10.1016/0142-9612(90)90004-A.
  • John, R. P., R. D. Tyagi, S. K. Brar, R. Y. Surampalli, and D. Prévost. 2011. Bio-encapsulation of microbial cells for targeted agricultural delivery. Critical Reviews in Biotechnology 31 (3):211–26. doi: 10.3109/07388551.2010.513327.
  • Kalashnikova, I., H. Bizot, B. Cathala, and I. Capron. 2011. New pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir: The ACS Journal of Surfaces and Colloids 27 (12):7471–9. doi: 10.1021/la200971f.
  • Kanczler, J. M., H. S. Sura, J. Magnay, D. Green, R. O. C. Oreffo, J. P. Dobson, and A. J. El Haj. 2010. Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Engineering Part A 16 (10):3241–50. doi: 10.1089/ten.tea.2009.0638.
  • Kang, J., and S. P. Schwendeman. 2002. Comparison of the effects of Mg (OH) 2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly (D, L-lactide-co-glycolide) implants. Biomaterials 23 (1):239–45. doi: 10.1016/S0142-9612(01)00101-6.
  • Kaymak, H. C. 2010. Potential of PGPR in agricultural innovations. In Maheshwari D. (Ed.), Plant growth and health promoting bacteria, Microbiology Monographs, vol 18., 45–79. Berlin, Germany: Springer.
  • Kim, H.-J., H.-C. Lee, J.-S. Oh, B.-A. Shin, C.-S. Oh, R.-D. Park, K.-S. Yang, and C.-S. Cho. 1999. Polyelectrolyte complex composed of chitosan and sodium alginate for wound dressing application. Journal of Biomaterials Science, Polymer Edition 10 (5):543–56. doi: 10.1163/156856299X00478.
  • Kim, Y. D., and C. V. Morr. 1996. Microencapsulation properties of gum arabic and several food proteins: Spray-dried orange oil emulsion particles. Journal of Agricultural and Food Chemistry 44 (5):1314–20. doi: 10.1021/jf9503927.
  • Kloepper, J. W., and M. N. Schroth. 1978. Plant growth-promoting rhizobacteria on radishes. Paper Presented at the Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, August 27, 1978, Angers, France.
  • Kosaraju, S. L. 2005. Colon targeted delivery systems: Review of polysaccharides for encapsulation and delivery. Critical Reviews in Food Science and Nutrition 45 (4):251–8. doi: 10.1080/10408690490478091.
  • Krasaekoopt, W., B. Bhandari, and H. Deeth. 2004. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal 14 (8):737–43. doi: 10.1016/j.idairyj.2004.01.004.
  • Lahooti, S., and M. V. Sefton. 1999. Methods for microencapsulation with HEMA-MMA. Tissue Engineering Methods and Protocols 8:331–48.
  • Lee, C. H., A. Singla, and Y. Lee. 2001. Biomedical applications of collagen. International Journal of Pharmaceutics 221 (1–2):1–22. doi: 10.1016/S0378-5173(01)00691-3.
  • Li, R. H. 1998. Materials for immunoisolated cell transplantation. Advanced Drug Delivery Reviews 33 (1–2):87–109.
  • Li, Y., H. Zhu, F. Shen, J. Wan, S. Lacey, Z. Fang, H. Dai, and L. Hu. 2015. Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy 13:346–54. doi: 10.1016/j.nanoen.2015.02.015.
  • Lim, F., and A. M. Sun. 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science 210 (4472):908–10. doi: 10.1126/science.6776628.
  • Lora, J. H., and W. G. Glasser. 2002. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment 10 (1/2):39–48. doi: 10.1023/A:1021070006895.
  • Luckachan, G. E., and C. K. S. Pillai. 2011. Biodegradable polymers-a review on recent trends and emerging perspectives. Journal of Polymers and the Environment 19 (3):637–76. doi: 10.1007/s10924-011-0317-1.
  • Makadia, H. K., and S. J. Siegel. 2011. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3 (3):1377–97. doi: 10.3390/polym3031377.
  • Malafaya, P. B., G. A. Silva, and R. L. Reis. 2007. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews 59 (4–5):207–33. doi: 10.1016/j.addr.2007.03.012.
  • Malzahn, K., F. Marsico, K. Koynov, K. Landfester, C. K. Weiss, and F. R. Wurm. 2014. Selective interfacial olefin cross metathesis for the preparation of hollow nanocapsules. ACS Macro Letters 3 (1):40–3. doi: 10.1021/mz400578e.
  • Martín, L., J. L. Marqués, A. González-Coloma, A. M. Mainar, A. M. F. Palavra, and J. S. Urieta. 2012. Supercritical methodologies applied to the production of biopesticides: A review. Phytochemistry Reviews 11 (4):413–31. doi: 10.1007/s11101-012-9268-y.
  • Martin, M. J., F. Lara-Villoslada, M. A. Ruiz, and M. E. Morales. 2013. Effect of unmodified starch on viability of alginate-encapsulated Lactobacillus fermentum CECT5716. LWT Food Science and Technology 53 (2):480–6. doi: 10.1016/j.lwt.2013.03.019.
  • Martínez-Viveros, O., M. A. Jorquera, D. E. Crowley, G. M. L. M. Gajardo, and M. L. Mora. 2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition 10 (3):293–319. doi: 10.4067/S0718-95162010000100006.
  • Mattos, B. D., B. L. Tardy, W. L. E. Magalhães, and O. J. Rojas. 2017. Controlled release for crop and wood protection: Recent progress toward sustainable and safe nanostructured biocidal systems. Journal of Controlled Release 262:139–50. doi: 10.1016/j.jconrel.2017.07.025.
  • Minemoto, Y., X. Fang, K. Hakamata, Y. Watanabe, S. Adachi, T. Kometani, and R. Matsuno. 2002. Oxidation of linoleic acid encapsulated with soluble soybean polysaccharide by spray-drying. Bioscience, Biotechnology, and Biochemistry 66 (9):1829–34. doi: 10.1271/bbb.66.1829.
  • Miyamoto, T., S. ‐I. Takahashi, H. Ito, H. Inagaki, and Y. Noishiki. 1989. Tissue biocompatibility of cellulose and its derivatives. Journal of Biomedical Materials Research Part Research 23 (1):125–33. doi: 10.1002/jbm.820230110.
  • Muggeridge, A., A. Cockin, K. Webb, H. Frampton, I. Collins, T. Moulds, and P. Salino. 2014. Recovery rates, enhanced oil recovery and technological limits. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 372 (2006):20120320. doi: 10.1098/rsta.2012.0320.
  • Mulder, W. J., R. J. A. Gosselink, M. H. Vingerhoeds, P. F. H. Harmsen, and D. Eastham. 2011. Lignin based controlled release coatings. Industrial Crops and Products 34 (1):915–20. doi: 10.1016/j.indcrop.2011.02.011.
  • NAAS. 2013. Nanotechnology in agriculture: Scope and current relevance. In Nanotechnology in Agriculture: Score and current relevance, 1–20. Policy paper no. 63. New Delhi, India: National Academy of Agricultural Sciences.
  • Nafea, E. H., A. Marson, L. A. Poole-Warren, and P. J. Martens. 2011. Immunoisolating semi-permeable membranes for cell encapsulation: Focus on hydrogels. Journal of Controlled Release 154 (2):110–22. doi: 10.1016/j.jconrel.2011.04.022.
  • Namlı, A., A. Mahmood, B. Sevilir, and E. Özkır. 2017. Effect of phosphorus solubilizing bacteria on some soil properties, wheat yield and nutrient contents. Eurasian Journal of Soil Science 6 (3):249–258. doi: 10.18393/ejss.293157.
  • Oda, K., R. Yumoto, J. Nagai, H. Katayama, and M. Takano. 2012. Enhancement effect of poly(amino acid)s on insulin uptake in alveolar epithelial cells. Drug Metabolism and Pharmacokinetics 27 (6):570–8.
  • Pacheco-Aguirre, J., E. Ruiz-Sanchez, A. Reyes-Ramírez, J. Cristóbal-Alejo, J. Tun-Suárez, and L. Borges-Gómez. 2015. Polymer-based encapsulation of Bacillus subtilis and its effect on Meloidogyne incognita in tomato. Phyton, International Journal of Experimental Botany 85:1–6.
  • Parenteau-Bareil, R., R. Gauvin, S. Cliche, C. Gariépy, L. Germain, and F. Berthod. 2011. Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis. Acta Biomaterialia 7 (10):3757–65. doi: 10.1016/j.actbio.2011.06.020.
  • Picot, A., and C. Lacroix. 2003. Production of multiphase water‐insoluble microcapsules for cell microencapsulation using an emulsification/spray‐drying technology. Journal of Food Science 68 (9):2693–700. doi: 10.1111/j.1365-2621.2003.tb05790.x.
  • Piskin, E. 1995. Biodegradable polymers as biomaterials. Journal of Biomaterials Science, Polymer Edition 6 (9):775–95. doi: 10.1163/156856295X00175.
  • Pop, O. L., T. Brandau, J. Schwinn, D. C. Vodnar, and C. Socaciu. 2015. The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage. Journal of Food Science and Technology 52 (7):4146–55. doi: 10.1007/s13197-014-1441-4.
  • Prakash, S., and T. M. S. Chang. 1995. Preparation and in vitro analysis of microencapsulated genetically engineered E. coli DH5 cells for urea and ammonia removal. Biotechnology and Bioengineering 46 (6):621–6. doi: 10.1002/bit.260460615.
  • Pueyo, M. E., S. Darquy, F. Capron, and G. Reach. 1994. In vitro activation of human macrophages by alginate-polylysine microcapsules. Journal of Biomaterials Science, Polymer Edition 5 (3):197–203. doi: 10.1163/156856293X00294.
  • Quellet, C., M. Schudel, and R. Ringgenberg. 2001. Flavors & fragrance delivery systems. CHIMIA International Journal for Chemistry 55 (5):4218.
  • Rask, F., S. M. Dallabrida, N. S. Ismail, Z. Amoozgar, Y. Yeo, M. A. Rupnick, and M. Radisic. 2010. Photocrosslinkable chitosan modified with angiopoietin-1 peptide, QHREDGS, promotes survival of neonatal rat heart cells. Journal of Biomedical Materials Research Part A 95 (1):105–17. doi: 10.1002/jbm.a.32808.
  • Reineccius, G. A. 1988. Spray-drying of food flavors. Washington, DC: ACS Publications.
  • Rekha, P. D., W.-A. Lai, A. B. Arun, and C.-C.Young. 2007. Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresource Technology 98 (2):447–51. doi: 10.1016/j.biortech.2006.01.009.
  • Ronel, S. H., M. J. D'Andrea, H. Hashiguchi, G. F. Klomp, and W. H. Dobelle. 1983. Macroporous hydrogel membranes for a hybrid artificial pancreas. I. Synthesis and chamber fabrication. Journal of Biomedical Materials Research Part Research 17 (5):855–64. doi: 10.1002/jbm.820170512.
  • Rosas-Flores, W., E. G. Ramos-Ramírez, and J. A. Salazar-Montoya. 2013. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum. Carbohydrate Polymers 98 (1):1011–17. doi: 10.1016/j.carbpol.2013.06.077.
  • Sagot, Y., S. A. Tan, E. Baetge, H. Schmalbruch, A. C. Kato, and P. Aebischer. 1995. Polymer encapsulated cell lines genetically engineered to release ciliary neurotrophic factor can slow down progressive motor neuronopathy in the mouse. European Journal of Neuroscience 7 (6):1313–22. doi: 10.1111/j.1460-9568.1995.tb01122.x.
  • Saha, C., A. Kaushik, A. Das, S. Pal, and D. Majumder. 2016. Anthracycline drugs on modified surface of quercetin-loaded polymer nanoparticles: A dual drug delivery model for cancer treatment. PLoS One 11 (5):e0155710. doi: 10.1371/journal.pone.0155710.
  • Salaön, F. 2013. Microencapsulation by interfacial polymerization. Encapsulation Nanotechnologies 137–73.
  • Sarioglu, O. F., N. O. S. Keskin, A. Celebioglu, T. Tekinay, and T. Uyar. 2017. Bacteria encapsulated electrospun nanofibrous webs for remediation of methylene blue dye in water. Colloids and Surfaces B Biointerfaces 152:245–51. doi: 10.1016/j.colsurfb.2017.01.034.
  • Sasson, Y., G. Levy-Ruso, O. Toledano, and I. Ishaaya. 2007. Nanosuspensions: Emerging novel agrochemical formulations. In Insecticides design using advanced technologies, 1–39. Berlin, Germany: Springer.
  • Schoebitz, M., M. D. López, and A. Roldán. 2013. Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review. Agronomy for Sustainable Development 33 (4):751–65. doi: 10.1007/s13593-013-0142-0.
  • Schoebitz, M., J. Osman, and L. Ciampi. 2013. Effect of immobilized Serratia sp. by spray-drying technology on plant growth and phosphate uptake. Chilean Journal of Agricultural & Animal Sciences, Ex Agro-Ciencia 29 (2):111–19.
  • Schoebitz, M., H. Simonin, and D. Poncelet. 2012. Starch filler and osmoprotectants improve the survival of rhizobacteria in dried alginate beads. Journal of Microencapsulation 29 (6):532–8. doi: 10.3109/02652048.2012.665090.
  • Sefton, M. V., M. H. May, S. Lahooti, and J. E. Babensee. 2000. Making microencapsulation work: Conformal coating, immobilization gels and in vivo performance. Journal of Controlled Release 65 (1–2):173–86. doi: 10.1016/S0168-3659(99)00234-5.
  • Sekhon, B. S. 2014. Nanotechnology in agri-food production: An overview. Nanotechnology, Science and Applications 7:31.doi: 10.2147/NSA.S39406.
  • Semyonov, D., O. Ramon, Z. Kaplun, L. Levin-Brener, N. Gurevich, and E. Shimoni. 2010. Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International 43 (1):193–202. doi: 10.1016/j.foodres.2009.09.028.
  • Shanmugam, S., R. Manavalan, D. Venkappayya, K. Sundaramoorthy, V. M. Mounnissamy, S. Hemalatha, and T. Ayyappan. 2005. Natural polymers and their applications. India: CSIR Location.
  • Shih, L., M.-H. Shen, and Y.-T. Van. 2006. Microbial synthesis of poly (ε-lysine) and its various applications. Bioresource Technology 97 (9):1148–59. doi: 10.1016/j.biortech.2004.08.012.
  • Singh, B., D. K. Sharma, R. Kumar, and A. Gupta. 2009. Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Applied Clay Science 45 (1-2):76–82. doi: 10.1016/j.clay.2009.03.001.
  • Sionkowska, A. 2011. Current research on the blends of natural and synthetic polymers as new biomaterials. Progress in Polymer Science 36 (9):1254–76. doi: 10.1016/j.progpolymsci.2011.05.003.
  • Slaughter, B. V., S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas. 2009. Hydrogels in regenerative medicine. Advanced Materials (Deerfield Beach, Fla.) 21 (32–33):3307–29. doi: 10.1002/adma.200802106.
  • Södergard, A., and M. Stolt. 2010. Poly (lactic acid): Synthesis, structures, properties. In Processing and applications, ed. by R. Auras, L.-T. Lim, S. E. M. Selke, and H. Tsuji. Hoboken, NJ: John Wiley and Sons.
  • Sonia, T. A., and C. P. Sharma. 2012. An overview of natural polymers for oral insulin delivery. Drug Discovery Today 17 (13–14):784–92. doi: 10.1016/j.drudis.2012.03.019.
  • Stewart, D. 2008. Lignin as a base material for materials applications: Chemistry, application and economics. Industrial Crops and Products 27 (2):202–7. doi: 10.1016/j.indcrop.2007.07.008.
  • Sucamori, M. E., and M. V. Sefton. 1989. Microencapsulation of pancreatic islets in a water insoluble polyacrylate. ASAIO Journal 35 (4):791–9.
  • Svagan, A. J., A. Musyanovych, M. Kappl, M. Bernhardt, G. Glasser, C. Wohnhaas, L. A. Berglund, J. Risbo, and K. Landfester. 2014. Cellulose nanofiber/nanocrystal reinforced capsules: A fast and facile approach toward assembly of liquid-core capsules with high mechanical stability. Biomacromolecules 15 (5):1852–9. doi: 10.1021/bm500232h.
  • Tackenberg, M. W., C. Geisthövel, A. Marmann, H. P. Schuchmann, P. Kleinebudde, and M. Thommes. 2015a. Mechanistic study of carvacrol processing and stabilization as glassy solid solution and microcapsule. International Journal of Pharmaceutics 478 (2):597–605. doi: 10.1016/j.ijpharm.2014.12.012.
  • Tackenberg, M. W., R. Krauss, A. Marmann, M. Thommes, H. P. Schuchmann, and P. Kleinebudde. 2015b. Encapsulation of liquids using a counter rotating twin screw extruder. European Journal of Pharmaceutics and Biopharmaceutics 89:9–17. doi: 10.1016/j.ejpb.2014.11.017.
  • The U.S. Energy Information Administration (EIA). 2017. How much oil is used to make plastic? https://www.eia.gov/tools/faqs/faq.php?id=34&t=6(accessed December 1).
  • Tortora, M., F. Cavalieri, P. Mosesso, F. Ciaffardini, F. Melone, and C. Crestini. 2014. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules. Biomacromolecules 15 (5):1634–43. doi: 10.1021/bm500015j.
  • Traub, W., and K. A. Piez. 1971. The chemistry and structure of collagen. Advances in Protein Chemistry 25:243–352.
  • Tsuji, H. 2013. Poly (lactic acid). Bio-Based Plastics: Materials and Applications 171–239.
  • Tu, L., Y. He, H. Yang, Z. Wu, and L. Yi. 2015. Preparation and characterization of alginate–gelatin microencapsulated Bacillus subtilis SL-13 by emulsification/internal gelation. Journal of Biomaterials Science, Polymer Edition 26 (12):735–49. doi: 10.1080/09205063.2015.1056075.
  • Ubbink, J. 2003. Flavor delivery systems. In Kirk-Othmer encyclopedia of chemical technology.
  • Uludag, H., and M. V. Sefton. 1992. Metabolic activity of CHO fibroblasts in HEMA–MMA microcapsules. Biotechnology and Bioengineering 39 (6):672–8. doi: 10.1002/bit.260390612.
  • Uludag, H., and M. V. Sefton. 1993. Microencapsulated human hepatoma (HepG2) cells: In vitro growth and protein release. Journal of Biomedical Materials Research Part Research 27 (10):1213–24. doi: 10.1002/jbm.820271002.
  • Varankovich, N. V., N. H. Khan, M. T. Nickerson, M. Kalmokoff, and D. R. Korber. 2015. Evaluation of pea protein–polysaccharide matrices for encapsulation of acid-sensitive bacteria. Food Research International 70:118–24. doi: 10.1016/j.foodres.2015.01.028.
  • Walsh, D., L. Arcelli, T. Ikoma, J. Tanaka, and S. Mann. 2003. Dextran templating for the synthesis of metallic and metal oxide sponges. Nature Materials 2 (6):386–90. doi: 10.1038/nmat903.
  • Wang, X., and J. Zhao. 2013. Encapsulation of the herbicide picloram by using polyelectrolyte biopolymers as layer-by-layer materials. Journal of Agricultural and Food Chemistry 61 (16):3789–96. doi: 10.1021/jf4004658.
  • Wells, G. D. M., M. M. Fisher, and M. V. Sefton. 1993. Microencapsulation of viable hepatocytes in HEMA-MMA microcapsules: A preliminary study. Biomaterials 14 (8):615–20. doi: 10.1016/0142-9612(93)90181-Z.
  • Wibowo, D., C.-X. Zhao, and A. P. J. Middelberg. 2014. Emulsion-templated silica nanocapsules formed using bio-inspired silicification. Chemical Communications 50 (77):11325–8. doi: 10.1039/C4CC04904G.
  • Wu, Z., L. Guo, S. Qin, and C. Li. 2012. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. Journal of Industrial Microbiology & Biotechnology 39 (2):317–27. doi: 10.1007/s10295-011-1028-2.
  • Yamamoto, M. M., Y. Mori, K. Osada, and H. Murakami. 1995. Enhancement of production of IgM and interferon-β in human cell lines by poly-lysine. Bioscience, Biotechnology, and Biochemistry 59 (10):1842–5. doi: 10.1271/bbb.59.1842.
  • Yang, Y.-Y., T.-S. Chung, and N. P. Ng. 2001. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 22 (3):231–41. doi: 10.1016/S0142-9612(00)00178-2.
  • Yeung, T. W., I. J. Arroyo-Maya, D. J. McClements, and D. A. Sela. 2016. Microencapsulation of probiotics in hydrogel particles: Enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads. Food & Function 7 (4):1797–804. doi: 10.1039/c5fo00801h.
  • Yeo, Y., Baek, N., & Park, K. 2001. Microencapsulation methods for delivery of protein drugs. Biotechnology and Bioprocess Engineering 6 (4):213–230. doi: 10.1039/c5fo00801h.
  • Young, C. ‐C., P. D. Rekha, W. ‐A. Lai, and A. B. Arun. 2006. Encapsulation of plant growth‐promoting bacteria in alginate beads enriched with humic acid. Biotechnology and Bioengineering 95 (1):76–83. doi: 10.1002/bit.20957.
  • Zhang, A., Z. Zhang, F. Shi, J. Ding, C. Xiao, X. Zhuang, C. He, L. Chen, and X. Chen. 2013. Disulfide crosslinked PEGylated starch micelles as efficient intracellular drug delivery platforms. Soft Matter 9 (7):2224–33. doi: 10.1039/c2sm27189c.
  • Zhang, Z., R. Zhang, and D. J. McClements. 2017. Lactase (β-galactosidase) encapsulation in hydrogel beads with controlled internal pH microenvironments: Impact of bead characteristics on enzyme activity. Food Hydrocolloids 67:85–93. doi: 10.1016/j.foodhyd.2017.01.005.
  • Zheng, C.-H., J.-Q. Gao, Y.-P. Zhang, and W.-Q. Liang. 2004a. A protein delivery system: Biodegradable alginate-chitosan-poly(lactic-co-glycolic acid) composite microspheres. Biochemical and Biophysical Research Communications 323 (4):1321–7. doi: 10.1016/j.bbrc.2004.09.007.
  • Zheng, C. H., W. Q. Liang, H. Y. Yu, and H. L. Chen. 2004b. Evaluation of different methods to determine the loading of proteins in PLGA microspheres. Die Pharmazie An International Journal of Pharmaceutical Sciences 59 (3):232–3.
  • Zhi, J., B. Zhang, Y. Wu, and Z. Feng. 2001. Study on a series of main‐chain liquid–crystalline ionomers containing sulfonate groups. Journal of Applied Polymer Science 81 (9):2210–8. doi: 10.1002/app.1658.
  • Zielinski, B. A., and P. Aebischer. 1994. Chitosan as a matrix for mammalian cell encapsulation. Biomaterials 15 (13):1049–56. doi: 10.1016/0142-9612(94)90090-6.
  • Zohar-Perez, C., L. Chernin, I. Chet, and A. Nussinovitch. 2003. Structure of dried cellular alginate matrix containing fillers provides extra protection for microorganisms against UVC radiation. Radiation Research 160 (2):198–204. doi: 10.1667/RR3027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.