527
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Wastes to be the source of nutrients and energy to mitigate climate change and ensure future sustainability: options and strategies

, , , , , , , , , & show all
Pages 896-920 | Received 08 Jul 2019, Accepted 03 Oct 2019, Published online: 10 Jan 2020

References

  • Abbasi, M., M. A. Abduli, B. Omidvar, and A. Baghvand. 2014. Results uncertainty of support vector machine and hybrid of wavelet transform-support vector machine models for solid waste generation forecasting. Environmental Progress & Sustainable Energy 33 (1):220–8. doi: 10.1002/ep.11747.
  • Abbasi, M., and A. E. Hanandeh. 2016. Forecasting municipal solid waste generation using artificial intelligence modelling approaches. Waste Management 56:13–22. doi: 10.1016/j.wasman.2016.05.018.
  • Abduli, M. A., A. Naghib, M. Yonesi, and A. Akbari. 2011. Life cycle assessment (LCA) of solid waste management strategies in Tehran: Landfill and composting plus landfill. Environmental Monitoring and Assessment 178 (1-4):487–98. doi: 10.1007/s10661-010-1707-x.
  • Adamović, V. M., D. Z. Antanasijević, M. Đ. Ristić, A. A. Perić-Grujić, and V. V. Pocajt. 2017. Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis. Environmental Science and Pollution Research 24 (1):299–311. doi: 10.1007/s11356-016-7767-x.
  • Ahmed, M., Ahmad, S. Fayyaz-Ul-Hassan , G. Qadir, R. Hayat, F. A. Shaheen, and M. A. Raza. 2019. Innovative processes and technologies for nutrient recovery from wastes: A comprehensive review. Sustainability 11:4938. doi: 10.3390/su11184938.
  • Abdoli, M. A., M. F. Nezhad, R. S. Sede, and S. Behboudian. 2012. Longterm forecasting of solid waste generation by the artificial neural networks. Environmental Progress & Sustainable Energy 31 (4):628–36. doi: 10.1002/ep.10591.
  • Andre, L., A. Pauss, and T. Ribeiro. 2018. Solid anaerobic digestion: State-of-art, scientific and technological hurdles. Bioresource Technology 247:1027–37. doi: 10.1016/j.biortech.2017.09.003.
  • Antanasijević, D., V. Pocajt, I. Popović, N. Redžić, and M. Ristić. 2013. The forecasting of municipal waste generation using artificial neural networks and sustainability indicators. Sustainability Science 8 (1):37–46. doi: 10.1007/s11625-012-0161-9.
  • Ayvaz-Cavdaroglu, N., A. Coban, and I. Firtina-Ertis. 2019. Municipal solid waste management via mathematical modeling: A case study in İstanbul, Turkey. Journal of Environmental Management 244:362–9. doi: 10.1016/j.jenvman.2019.05.065.
  • Bilitewski, B., C. Oros, and T. H. Christensen. 2011. Mechanical biological treatment. In Solid waste technology and management, ed. T. H. Christensen, 628–638. London: Willey & Sons.
  • Björklund, A. E., and G. Finnveden. 2007. Life cycle assessment of a national policy proposal – the case of a Swedish waste incineration tax. Waste Management 27 (8):1046–58. doi: 10.1016/j.wasman.2007.02.027.
  • Björklund, A., J. Johansson, M. Nilsson, P. Eldh, and G. Finnveden. 2003. Environmental assessment of a waste incineration tax. Case Study and Evaluation of a Framework for Strategic Environmental Assessment. Division of Defence Analysis, SE-172 90 Stockholm.
  • Blumenthal, K. 2011. Environment and energy. Generation and treatment of municipal waste. Eurostat, Statistics in Focus 31/2011. http://temis.documentation.developpement-durable.gouv.fr/docs/Temis/0076/Temis-0076729/Eurostat_2011_EE_31.pdf.
  • Bogner, J., R. Pipatti, R. Hashimoto, C. Diaz, K. Mareckova, L. Diaz, P. S. Kjeldsen, A. Faaij, Q. Gao, T. Zhang, et al. 2008. Mitigation of global GHG emissions from waste: Conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Management Research 26:11–32. doi: 10.1177/0734242X07088433.
  • Boldrin, A., J. K. Andersen, J. Møller, T. H. Christensen, and E. Favoino. 2009. Composting and compost utilization: Accounting for greenhouse gases and global warming contributions. Waste Management & Research 27 (8):800–12. doi: 10.1177/0734242X09345275.
  • Botello-Alvareza, J. E., P. Rivas-Garciab, L. Fausto-Castro, A. Estrada-Baltazar, and R. Gomez-Gonzalez. 2018. Informal collection, recycling and export of valuable waste as transcendent factor in the municipal solid waste management: A Latin-American reality. Journal of Cleaner Production 182:485–95. doi: 10.1016/j.jclepro.2018.02.065.
  • Brown, L. C., and P. M. Berthouex. 2002. Statistics for Environmental Engineers: CRC press.
  • Chaerul, M., M. Tanaka, and A. V. Shekdar. 2008. A system dynamics approach for hospital waste management. Waste Management 28 (2):442–9. doi: 10.1016/j.wasman.2007.01.007.
  • Chandra, R., H. Takeuchi, and T. Hasegawa. 2012. Methane production from ligno cellulosic agricultural crop wastes: Are view in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews 16 (3):1462–76. doi: 10.1016/j.rser.2011.11.035.
  • Chen, H. W., and N.-B. Chang. 2000. Prediction analysis of solid waste generation based on grey fuzzy dynamic modeling. Resources, Conservation and Recycling 29 (1/2):1–18. doi: 10.1016/S0921-3449(99)00052-X.
  • Chen, M., A. Giannis, and J.-Y. Wang. 2012. Application of system dynamics model for municipal solid waste generation and landfill capacity evaluation in Singapore.
  • Cherubin, M. R., D. M. da Silva Oliveira, B. J. Feigl, L. G. Pimentel, I. P. Lisboa, M. R. Gmach, L. L. Varanda, M. C. Morais, L. S. Satiro, G. V. Popin, et al. 2018. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Scientia Agricola 75 (3):255–72. doi: 10.1590/1678-992x-2016-0459.
  • Chhay, L., Md, A. H. Reyad, R. Suy, Md, R. Islam, Md, and M. Mian. 2018. Municipal solid waste generation in China: Influencing factor analysis and multi-model forecasting. Journal of Material Cycles and Waste Management 20 (3):1761–70. doi: 10.1007/s10163-018-0743-4.
  • Choi, K. S., S. Kondaveeti, and B. Min. 2017. Biochemical methane (CH4) production in anaerobic digestion at different supplemental voltages. Bioresource Technology 245:826–32. doi: 10.1016/j.biortech.2017.09.057.
  • Dai, C., Y. P. Li, and G. H. Huang. 2011. A two-stage support-vector-regression optimization model for municipal solid waste management – a case study of Beijing, China. Journal of Environmental Management 92 (12):3023–37. doi: 10.1016/j.jenvman.2011.06.038.
  • Das, S., S.-H. Lee, P. Kumar, K.-H. Kim, S. S. Lee, and S. S. Bhattacharya. 2019. Solid waste management: Scope and the challenge of sustainability. Journal of Cleaner Production 228:658–78. doi: 10.1016/j.jclepro.2019.04.323.
  • Del Borghi, A., M. Gallo, and M. Del Borghi. 2009. A survey of life cycle approaches in waste management. The International Journal of Life Cycle Assessment 14 (7):597–610. doi: 10.1007/s11367-009-0111-7.
  • Di Lonardo, M. C., F. Lombardi, and R. Gavasci. 2012. Characterization of MBT plants input and outputs: A review. Reviews in Environmental Science and Bio/Technology 11 (4):353–63. doi: 10.1007/s11157-012-9299-2.
  • Dornberg, V., and A. P. C. Faaij. 2006. Optimising waste treatment systems. Part B: Analyses and scenarios for The Netherlands. Resources Conservation & Recycling 48:227–48. doi: 10.1016/j.resconrec.2006.02.002.
  • Dyson, B., and N.-B. Chang. 2005. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling. Waste Management 25 (7):669–79. doi: 10.1016/j.wasman.2004.10.005.
  • Elwan, A., Y. Z. Arief, Z. Adzis, and M. H. I. Saad. 2013. The viability of generating electricity by harnessing household garbage solid waste using life cycle assessment. Procedia Technology 11:134–40. doi: 10.1016/j.protcy.2013.12.172.
  • Feng, Y. H., Y. B. Zhang, S. Chen, and X. Quan. 2015. Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode. Chemical Engineering Journal 259:787–94. doi: 10.1016/j.cej.2014.08.048.
  • Fitamo, T., A. Boldrin, K. Boe, I. Angelidaki, and C. Scheutz. 2016. Co-digestion of food and Garden waste with mixed sludge from waste water treatment in continuously stirred tank reactors. Bioresource Technology 206:245–54. doi: 10.1016/j.biortech.2016.01.085.
  • Friedrich, E., and C. Trois. 2011. Quantification of greenhouse gas emissions from waste management processes for municipalities – a comparative review focusing on Africa. Waste Management 31 (7):1585–96. doi: 10.1016/j.wasman.2011.02.028.
  • Gambella, C., F. Maggioni, and D. Vigo. 2019. A stochastic programming model for a tactical solid waste management problem. European Journal of Operational Research 273 (2):684–94. doi: 10.1016/j.ejor.2018.08.005.
  • Gansberger, M., L. F. R. Montgomery, and P. Liebhard. 2015. Botanical characteristics, crop management and potential of Silphium perfoliatum L. As a renewable resource for biogas production: A review. Industrial Crops and Products 63:362–72. doi: 10.1016/j.indcrop.2014.09.047.
  • Ghinea, C., E. N. Drăgoi, E.-D. Comăniţă, M. Gavrilescu, T. Câmpean, S. Curteanu, and M. Gavrilescu. 2016. Forecasting municipal solid waste generation using prognostic tools and regression analysis. Journal of Environmental Management 182:80–93. doi: 10.1016/j.jenvman.2016.07.026.
  • Ghisolfi, V., G. de Lorena Diniz Chaves, R. R. Siman, and L. H. Xavier. 2017. System dynamics applied to closed loop supply chains of desktops and laptops in Brazil: A perspective for social inclusion of waste pickers. Waste Management 60:14–31. doi: 10.1016/j.wasman.2016.12.018.
  • Hallaji, S. M., M. Kuroshkarim, and S. P. Moussavi. 2019. Enhancing methane production using anaerobic co-digestion of waste activated sludge with combined fruit waste and cheese whey. BMC Biotechnology 19 (1):19. doi: 10.1186/s12896-019-0513-y.
  • Hallaji, S. M., A. Torabian, B. Aminzadeh, S. Zahedi, and N. Eshtiaghi. 2018. Improvement of anaerobic digestion of sewage mixed sludge using free nitrous acid and Fenton pre-treatment. Biotechnology for Biofuels 11 (1):233. doi: 10.1186/s13068-018-1235-4.
  • Hantoko, D., M. Yan, B. Prabowo, H. Susanto, X. Li, and C. Chen. 2019. Chapter 13 - Aspen Plus Modeling Approach in Solid Waste Gasification. In: Current Developments in Biotechnology and Bioengineering, eds. S. Kumar, R. Kumar and A. Pandey, 259–81. Elsevier.
  • Heijungs, R., and J. B. Guinée. 2007. Allocation and ‘what-if’ scenarios in life cycle assessment of waste management systems. Waste Management 27 (8):997–1005. doi: 10.1016/j.wasman.2007.02.013.
  • Hettiarachchi, H., and C. Kshourad. 2019. Chapter 9 - Promoting Waste-to-Energy: Nexus Thinking, Policy Instruments, and Implications for the Environment. In Current Developments in Biotechnology and Bioengineering, eds. S. Kumar, R. Kumar and A. Pandey, 163–84. Elsevier.
  • Hong, R. J., G. F. Wang, R. Z. Guo, X. Cheng, Q. Liu, P. J. Zhang, and G. R. Qian. 2006. Life cycle assessment of BMT-based integrated municipal solid waste management: Case study in Pudong, China. Resources, Conservation and Recycling 49 (2):129–46. doi: 10.1016/j.resconrec.2006.03.007.
  • Inghels, D., and W. Dullaert. 2011. An analysis of household waste management policy using system dynamics modelling. Waste Management & Research 29 (4):351–70. doi: 10.1177/0734242X10373800.
  • Isikhuemhen, O. S., and N. A. Mikiashvilli. 2009. Lignocellulolytic enzyme activity, substrate utilization, and mushroom yield by Pleurotus ostreatus cultivated on substrate containing anaerobic digester solids. Journal of Industrial Microbiology & Biotechnology 36 (11):1353–62. doi: 10.1007/s10295-009-0620-1.
  • ISWA–International Solid Waste Association. 2009. Waste and climate change, ISWA White Paper, https://www.iswa.org/fileadmin/user_upload/_temp_/Small_GHG_white_paper_01.pdf.
  • Karak, T., R. M. Bhagat, and P. Bhattacharyya. 2012. Municipal Solid Waste Generation, Composition, and Management: The World Scenario. Critical Reviews in Environmental Science and Technology 42 (15):1509–1630.
  • Karavezyris, V., K.-P. Timpe, and R. Marzi. 2002. Application of system dynamics and fuzzy logic to forecasting of municipal solid waste. Mathematics and Computers in Simulation 60 (3):149–158.
  • Kannangara, M., R. Dua, L. Ahmadi, and F. Bensebaa. 2018. Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches. Waste Management 74:3–15. doi: 10.1016/j.wasman.2017.11.057.
  • Kaza, S., L. Yao, P. Bhada-Tata, and F. Van Woerden. 2018. What a Waste 2.0. A global snapshot of solid waste management to 2050. World Bank Group doi: 10.1596/978-1-4648-1329-0.
  • Keser, S., S. Duzgun, and A. Aksoy. 2012. Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey. Waste Management 32 (3):359–71. doi: 10.1016/j.wasman.2011.10.017.
  • Khalid, A., M. Arshad, M. Anjum, T. Mahmood, and L. Dawson. 2011. The anaerobic digestion of solid organic waste. Waste Management 31 (8):1737–44. doi: 10.1016/j.wasman.2011.03.021.
  • Kim, M.-H., and J.-W. Kim. 2010. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery. Science of the Total Environment 408 (19):3998–4006. doi: 10.1016/j.scitotenv.2010.04.049.
  • Kolekar, K. A., T. Hazra, and S. N. Chakrabarty. 2016. A review on prediction of municipal solid waste generation models. Procedia Environmental Sciences 35:238–44. doi: 10.1016/j.proenv.2016.07.087.
  • Kucharavy, D., and R. De Guio. 2007. Application of s-shaped curves. In: Presented at ETRIA TRIZ Future Conference 2007, Frankfurt online http://www.seecore.org/d/2007_02t.pdf.
  • Kum, V., A. Sharp, and N. Harnpornchai. 2005. Improving the solid waste management in Phnom Penh city: A strategic approach. Waste Management 25 (1):101–9. doi: 10.1016/j.wasman.2004.09.004.
  • Lal, R. 1995. The role of residues management in sustainable agricultural systems. Journal of Sustainable Agriculture 5 (4):51–78. doi: 10.1300/J064v05n04_06.
  • Lebersorger, S., and P. Beigl. 2011. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel. Waste Management 31 (9/10):1907–15. doi: 10.1016/j.wasman.2011.05.016.
  • Lee, B., J. G. Park, W. B. Shin, B. S. Kim, B. S. Byun, H. B. Jun, B. S. Byun, and H. B. Jun. 2019. Maximizing biogas production by pretreatment and by optimizing the mixture ratio of co-digestion with organic wastes. Environmental Engineering Research 24 (4):662–9. doi: 10.4491/eer.2018.375.
  • Li, Y., S. Y. Park, and J. Zhu. 2011. Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews 15 (1):821–6. doi: 10.1016/j.rser.2010.07.042.
  • Li, Z., H. Fu, and X. Qu. 2011. Estimating municipal solid waste generation by different activities and various resident groups: A case study of Beijing. Science of the Total Environment 409 (20):4406–14. doi: 10.1016/j.scitotenv.2011.07.018.
  • Liu, G., and J. Yu. 2007. Gray correlation analysis and prediction models of living refuse generation in Shanghai city. Waste Management 27 (3):345–51. doi: 10.1016/j.wasman.2006.03.010.
  • Lou, X. F., and J. Nair. 2009. The impact of landfilling and composting on greenhouse gas emissions – a review. Bioresource Technology 100 (16):3792–8. doi: 10.1016/j.biortech.2008.12.006.
  • Lozano-Olvera, G., S. Ojeda-Benítez, J. R. Castro-Rodríguez, M. Bravo-Zanoguera, and A. Rodríguez-Diaz. 2008. Identification of waste packaging profiles using fuzzy logic. Resources, Conservation and Recycling 52 (8–9):1022–30. doi: 10.1016/j.resconrec.2008.03.008.
  • Lu, S. G., T. Imai, M. Ukita, and M. Sekine. 2007. Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes. Journal of Environmental Sciences 19 (4):416–20. doi: 10.1016/S1001-0742(07)60069-2.
  • Manavalan, T., A. Manavalan, and K. Heese. 2015. Characterization of lignocellulolytic enzymes from white-rot fungi. Current Microbiology 70 (4):485–98. doi: 10.1007/s00284-014-0743-0.
  • Mayer, F., R. Bhandari, and S. Gäth. 2019. Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Science of the Total Environment 672:708–21. doi: 10.1016/j.scitotenv.2019.03.449.
  • Momayez, F., K. Karimi, and M. J. Taherzadeh. 2019. Energy recovery from industrial crop wastes by dry anaerobic digestion: A review. Industrial Crops and Products 129:673–87. doi: 10.1016/j.indcrop.2018.12.051.
  • Monni, S., R. Pipatti, A. Lehtilä, I. Savolainen, 2006. and, and S. Syri. Global climate change mitigation scenarios for solid waste management, VTT Publications 603, Julkaisija Publisher, Finland. Accessed September 2010. http://www.vtt.fi/inf/pdf/publications/2006/P603.pdf.
  • Munir, S., M. Baqar, N. Saeed, M. Zameer, and I. A. Shaikh. 2015. Modeling greenhouse gases emissions from MSW of Lahore. Technical Journal (Taxila) 20 (1):50–3.
  • Nelabhotla, A. B. T., and C. Dinamarca. 2019. Bioelectrochemical CO2 reduction to methane: MES integration in biogas production processes. Applied Sciences 9 (6):1056. doi: 10.3390/app9061056.
  • Ojeda-Benítez, S., C. A. Vega, and M. Y. Marquez-Montenegro. 2008. Household solid waste characterization by family socioeconomic profile as unit of analysis. Resources, Conservation and Recycling 52 (7):992–9. doi: 10.1016/j.resconrec.2008.03.004.
  • Oliveira, V., V. Sousa, and C. Dias-Ferreira. 2019. Artificial neural network modelling of the amount of separately-collected household packaging waste. Journal of Cleaner Production 210:401–9. doi: 10.1016/j.jclepro.2018.11.063.
  • Pandyaswargo, A. H., H. Onoda, and K. Nagata. 2012. Energy recovery potential and life cycle impact assessment of municipal solid waste management technologies in Asian countries using ELP model. International Journal of Energy and Environmental Engineering 3 (1):28. doi: 10.1186/2251-6832-3-28.
  • Prabhu, M. S., and S. Mutnuri. 2017. Anaerobic co-digestion of sewage sludge and food waste. Waste Management & Research 34:307–15. doi: 10.1177/0734242X16628976.
  • Pujara, Y., P. Pathaka, A. Sharmaa, and J. Govani. 2019. Review on Indian Municipal Solid Waste Management practices for reduction of environmental impacts to achieve sustainable development goals. Journal of Environmental Management 29:109238. doi: 10.1016/j.jenvman.2019.07.009.
  • Purcell, M., and W. L. Magette. 2009. Prediction of household and commercial BMW generation according to socio-economic and other factors for the Dublin region. Waste Management 29 (4):1237–50. doi: 10.1016/j.wasman.2008.10.011.
  • Rajeshwari, K. V., M. Balakrishnan, A. Kansal, K. Lata, and V. V. N. Kishore. 2000. State of the art anaerobic digestion technology for industrial waste water treatment. Renewable and Sustainable Energy Reviews 4 (2):135–56. doi: 10.1016/S1364-0321(99)00014-3.
  • Ramzan, N., A. Ashraf, S. Naveed, and A. Malik. 2011. Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste. Biomass and Bioenergy 35 (9):3962–9. doi: 10.1016/j.biombioe.2011.06.005.
  • Rotaru, A. E., P. M. Shrestha, F. Liu, M. Shrestha, D. Shrestha, M. Embree, K. Zengler, C. Wardman, K. P. Nevin, and D. R. Lovley. 2014. A new model for electron flow during anaerobic digestion: Direct inter species electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science 7 (1):408–15. doi: 10.1039/C3EE42189A.
  • Sengupta, S.,. T. Nawaz, and J. Beaudry. 2015. Nitrogen and phosphorus recovery from wastewater. Current Pollution Reports 1 (3):155–66. doi: 10.1007/s40726-015-0013-1.
  • Singh, R. K., H. Yabar, T. Mizunoya, Y. Higano, and R. Rakwal. 2014. Potential benefits of introducing integrated solid waste management approach in developing countries: A case study in Kathmandu city. Journal of Sustainable Development 7 (6):70–83. doi: 10.5539/jsd.v7n6p70.
  • Srivastava, A. K., and A. K. Nema. 2011. Life cycle assessment of integrated solid waste management system of Delhi, 267–276. Dordrecht: Springer Netherlands. doi: 10.1007/978-94-007-1899-9_26.
  • Sufian, M. A., and B. K. Bala. 2007. Modeling of urban solid waste management system: The case of Dhaka city. Waste Management 27 (7):858–68. doi: 10.1016/j.wasman.2006.04.011.
  • Sun, N., and S. Chungpaibulpatana. 2017. Development of an appropriate model for forecasting municipal solid waste generation in Bangkok. Energy Procedia 138:907–12. doi: 10.1016/j.egypro.2017.10.134.
  • Syeda, A. B., A. Jadoon, and M. N. Chaudhry. 2017. Life cycle assessment modelling of greenhouse gas emissions from existing and proposed municipal solid waste management system of Lahore, Pakistan. Sustainability 9 (12):2242. doi: 10.3390/su9122242.
  • Takata, M., K. Fukushima, M. Kawai, N. Nagao, C. Niwa, T. Yoshida, and T. Toda. 2013. The choice of biological waste treatment method for urban areas in Japan—An environmental perspective. Renewable and Sustainable Energy Reviews 23:557–67. doi: 10.1016/j.rser.2013.02.043.
  • Tariq, M., M. Ayub, M. Elahi, A. H. Ahmad, M. N. Chaudhary, and M. A. Nadeem. 2011. Forage yield and some quality attributes of millet (Pennisetum americannum L.) hybrid under various regimes of nitrogen fertilization and harvesting dates. African Journal Agricultural Research 6 (16):3883–90.
  • U.S. Environmental Protection Agency. 1997. Opportunities for landfill gas energy recovery in Colorado, EPA 430-B-97-036. Washington, DC: EPA.
  • UNFCCC-United Nation Framework Convention on Climate Change (UNFCCC). Accessed 5 September 2019. https://di.unfccc.int/ghg_profile_non_annex1
  • Wang, A., W. Liu, S. Cheng, D. Xing, J. Zhou, and B. E. Logan. 2009. Source of methane and methods to control its formation in single chamber microbial electrolysis cells. International Journal of Hydrogen Energy 34 (9):3653–8. doi: 10.1016/j.ijhydene.2009.03.005.
  • Winkler, J., and B. Bilitewski. 2007. Comparative evaluation of life cycle assessment models for solid waste management. Waste Management 27 (8):1021–31. doi: 10.1016/j.wasman.2007.02.023.
  • Woon, K. S., and I. M. C. Lo. 2016. An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator. Resources, Conservation and Recycling 107:104–14. doi: 10.1016/j.resconrec.2015.11.020.
  • Xie, M., Q. Qiao, Q. Sun, and L. Zhang. 2013. Life cycle assessment of composite packaging waste management—a Chinese case study on aseptic packaging. The International Journal of Life Cycle Assessment 18 (3):626–35. doi: 10.1007/s11367-012-0516-6.
  • Zhang, Y., Y. Jing, X. Quan, Y. Liu, and P. Onu. 2011. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye waste water. Water Science and Technology 63 (4):741–6. doi: 10.2166/wst.2011.301.
  • Zhao, Z.,. Y. Zhang, X. Quan, and H. Zhao. 2016. Evaluation on direct inter species electron transfer in anaerobic sludge digestion of microbial electrolysis cell. Bioresource Technology 200:235–44. doi: 10.1016/j.biortech.2015.10.021.
  • Zhao, W., E. van der Voet, Y. Zhang, and G. Huppes. 2009. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: Case study of Tianjin, China. Science of the Total Environment 407 (5):1517–26. doi: 10.1016/j.scitotenv.2008.11.007.
  • Zhou, J., X. You, T. Jia, B. Niu, L. Gong, X. Yang, and Y. Zhou. 2019. Effect of nanoscale zero-valent iron on the change of sludge anaerobic digestion process. Environmental Technology :1–11. doi: 10.1080/09593330.2019.1604811.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.