300
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Effects of silicon on some morphological and physiological traits of rose (Rosa chinensis var. minima) plants grown under salinity stress

&
Pages 536-549 | Received 07 Dec 2019, Accepted 17 Aug 2020, Published online: 30 Nov 2020

References

  • Abdul Qados, A. M. S., and A. E. Moftah. 2015. Influence of silicon and nano-silicon on germination growth and yield of faba bean (Vicia faba L.) under salt stress conditions. Journal of the American Society for Horticultural Science 5 (6):509–24.
  • Ahmad, I., J. M. Dole, M. Saleem, M. A. Khan, A. Akram, and A. S. Khan. 2013. Preservatives and packaging material have an impact on the post-harvest longevity of cut Rosa hybrida L. “Kardinal” flowers. Journal of Horticultural Science and Biotechnology 88 (3):251–6.
  • Al-Aghabary, K., Z. Zhu, and Q. H. Shi. 2005. Influence of silicon supply on chlorophyll content, chlorophyll fl uorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition 27 (12):2101–15.
  • Almutairi, Z. M. 2016. Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Osmotic Journal 9:106–14.
  • Amira, M. S., A. Qados, and A. E. Moftah. 2015. Influence of silicon and nano-silicon on germination, growth and yield of Faba Bean (Vicia faba L.) under salt stress conditions. American Journal of Experimental Agriculture 5 (6):509–24.
  • Arnon, A. N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal 23:112–21.
  • Arora, A.,. R. K. Sairam, and G. C. Srivastava. 2002. Oxidative stress and antioxidant shoot in plants. Plant Physiology 82:1227–37.
  • Asmar, S. A., E. M. Castro, M. Pasqual, F. J. Pereira, and J. D. R. Soares. 2013. Changes in leaf anatomy and photosynthesis of micro propagated banana plantlets under different silicon sources. Scientia Horticulturae 161:328–32.
  • Barakatain, L., A. Nikbakht, N. Etemadi, and A. J. Khajeh. 2013. Effect of source and method of silica application on some of the quantitative and physiological characteristics of Gerbera jamesonii L. Journal of Greenhouse Culture Science and Technology 4:39–47.
  • Bor, M., F. Ozdemir, and I. Turkan. 2003. The effect of salt stress in lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Science 164 (1):77–84.
  • Cassaniti, C., D. Romano, and T. J. Flowers. 2012. The response of ornamental plants to saline irrigation water. In Irrigation – Water management, pollution and alternative strategies, ed. I. Garcia-Garizabal, 131–58. London, UK: IntechOpen.
  • Cruz De Carvalho, M. H. 2008. Drought stress and reactive oxygen species. Plant Signaling & Behavior 3 (3):156–65. doi:10.4161/psb.3.3.5536.
  • Elliott, C. L., and G. H. Snyder. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. Journal of Agricultural and Food Chemistry 39 (6):1118–9. doi:10.1021/jf00006a024.
  • Feng, J. P., Q. H. Shi, and X. F. Wang. 2013. Effects of exogenous silicon on photosynthetic capacity and antioxidant enzyme activities in chloroplast of cucumber seedlings under excess manganese. Agricultural Sciences in China 8 (1):40–50. doi: 10.1016/S1671-2927(09)60007-9.
  • Ghorbanian, H., M. Janmohammadi, A. Ebadi-Seghrloo, and N. Sabaghnia. 2019. Genotypic response of barley to exogenous application of nanoparticles under water stress condition. Pobrane z Czasopisma Annales C 2:15–27.
  • Giannopolitis, C., and L. Ries. 1977. Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiology 59 (2):315–8. doi: 10.1104/pp.59.2.315.
  • Gong, H., X. Zhu, K. Chen, S. Wang, and C. Zhang. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science 169 (2):313–21.
  • Haghighi, M., Z. Afifipour, and M. Mozafarian. 2012. The effect of N-Si on tomato seed germination under salinity levels. Journal of Biological and Environmental Sciences (JBES) 6:87–90.
  • Haghighi, M., and M. Pessarakli. 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae 161:111–7.
  • Hoagland, D. R., and D. I. Arnon. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular-347. Berkeley, CA: College of Agriculture, University of California.
  • Hwang, S. J., H. M. Park, and B. R. Jeong. 2005. Effects of potassium silicate on the growth of miniature rose ‘Pinocchio’ grown on rockwool and its cut flower quality. Journal of the Japanese Society for Horticultural Science 74 (3):242–7.
  • Jiang, L. P., A. N. Wang, Y. Zhao, J. R. Zhang, and J. J. Zhu. 2004. Novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorganic Chemistry Communications 7 (4):506–9. doi: 10.1016/j.inoche.2004.02.003.
  • Joseph, E. A., K. V. Mohanan, and V. V. Radhakrishnan. 2015. Effect of Salinity Variation on the Quantity of Antioxidant Enzymes in Some Rice Cultivars of North Kerala. Universal Journal of Agricultural Research 3 (3):89–105.
  • Kalteh, M., Z. T. Alipour, S. Ashraf, M. M. Aliabadi, and A. F. Nosratabadi. 2014. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks 4:49–55.
  • Li, X., S. Wan, Y. Kang, X. Chen, and L. Chu. 2016. Chinese rose (Rosa Chinensis) growth and ion accumulation under irrigation with waters of different salt contents. Agricultural Water Management 163:180–9.
  • Liang, Y., W. Sun, Y. G. Zhu, and P. Christie. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution (Barking, Essex: 1987) 147 (2):422–8. doi: 10.1016/j.envpol.2006.06.008.
  • Mahdieh, M., N. Habibollahi, M. R. Amirjani, M. H. Abnosi, and M. Ghorbanpour. 2015. Exogenous silicon nutrition ameliorates salt-induced stress by improving growth and efficiency of PSII in Oryza sativa L. cultivars. Journal of Soil Science and Plant Nutrition 15 (4):0–1060.
  • Mahouachi, J. 2018. Long-term salt stress influence on vegetative growth and foliar nutrient changes in mango (Mangifera indica L.) seedlings. Scientia Horticulturae 234:95–100.
  • Marschner, P. 2012. Marschner’s mineral nutrition of higher plants. London, UK: Academic Press.
  • Mäser, P., Y. Hosoo, S. Goshima, T. Horie, B. Eckelman, K. Yamada, K. Yoshida, E. P. Bakker, A. Shinmyo, S. Oiki, et al. 2002. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proceedings of the National Academy of Sciences of the United States of America 99 (9):6428–33. doi: 10.1073/pnas.082123799.
  • Matraszek, R., B. Hawrylak-Nowak, and M. Chwil. 2015. Protein hydrolysate as a component of salinized soil in the cultivation of Ageratum houstonianum Mill. (Asteraceae). Acta Agrobotanica 68:247–53.
  • Mattson, N. S., and W. R. Leatherwood. 2010. Potassium silicate drenches increase leaf silicon content and affects morphological traits of several floriculture crops grown in a peat-based substrate. HortScience 45 (1):43–7.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 9:405–10.
  • Miyake, Y., and E. Takahashi. 1986. Effect of silicon on the growth and fruit production of strawberry plants in a solution culture. Soil Science & Plant Nutrition 32 (2):321–6.
  • Moon, H. H., M. J. Bae, and B. R. Jeong. 2008. Effect of silicate supplemented medium on rooting of cutting and growth of chrysanthemum. Flower Research Journal 16:107–11.
  • Moussa, H. R. 2006. Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). International Journal of Agriculture and Biology 8:293–7.
  • Munns, R., R. A. James, and A. Läuchli. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57 (5):1025–43. doi: 10.1093/jxb/erj100.
  • Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment 25 (2):239–50. doi: 10.1046/j.0016-8025.2001.00808.x.
  • Nawaz, K., K. Hussain, A. Majeed, F. Khan, S. Afghan, and K. Ali. 2010. Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. African Journal of Biotechnology 9:5475–80.
  • Noctor, G., and C. H. Foyer. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49:249–79. doi: 10.1146/annurev.arplant.49.1.249.
  • Qadir, M., E. Quillérou, V. Nangia, G. Murtaza, M. Singh, R. J. Thomas, P. Drechsel, and A. D. Noble. 2014. Economics of salt-induced land degradation and restoration. Natural Resources Forum 38 (4):282–95.
  • Oki, L. R., and J. H. Lieth. 2004. Effect of changes in substrate salinity on the elongation of Rosa Hybrida L. “Kardinal” shoots. Scientia Horticulturae 101 (1–2):103–19.
  • Rawson, H. M., M. J. Long, and R. Munns. 1988. Growth and development in NaCl treated plants. Functional Plant Biology 15 (4):519–27.
  • Raven, J. A. 1983. Transport and function of silicon in plants. Biological Reviews 58 (2):179–207.
  • Romero-Aranda, M. R., O. Jurado, and J. Cuartero. 2006. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology 163 (8):847–55. doi: 10.1016/j.jplph.2005.05.010.
  • Ruffini, C. M., and R. Cremonini. 2009. Nanoparticles and higher plants. Caryologia 62 (2):161–5.
  • Reezi, S., M. B. S. Kalantari, S. M. Okhovvat, and B. R. Jeong. 2009. Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt-stressed cut rose (Rosa xhybrida L.)’Hot Lady. African Journal of Biotechnology 8:1502.
  • Reis, M., J. R. M. Figueiredo, R. Paiva, D. P. da Silva, C. V. N. de Faria, and L. Rouhana. 2016. Salinity in rose production. Ornamental Horticulture 22 (2):228–34.
  • Sabaghnia, N., and M. Janmohammadi. 2014. Graphic analysis of nano-silicon by salinity stress interaction on germination properties of lentil using the biplot method. Agricultural and Forest Meteorology 60:29–40.
  • Sairam, R. K., K. Rao, and G. C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science 163 (5):1037–46. doi:10.1016/S0168-9452(02)00278-9.
  • Salin, M. L. 1991. Chloroplast and mitochondrial mechanism for protection against oxygen toxicity. Free Radical Research 12:851–8.
  • Savant, N. K., G. H. Snyder, and L. E. Datnoff. 1997. Silicon management and sustainable rice production. Advances in Agronomy 58:151–99.
  • Savvas, D., N. Mantzos, P. E. Barouchas, I. L. Tsirogiannis, C. Olympios, and H. C. Passam. 2007. Modelling salt accumulation by a bean crop grown in a closed hydroponic system in relation to water uptake. Scientia Horticulturae 111 (4):311–8. doi: 10.1016/j.scienta.2006.10.033.
  • Shen, X., Y. Zhou, L. Duan, Z. Li, A. E. Eneji, and J. Li. 2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology 167 (15):1248–52. doi: 10.1016/j.jplph.2010.04.011.
  • Sharifi, M., A. H. Koshgoftarmanesh, and F. Ghanati. 2018. Effect of silicon nutrition on some growth and physiological parameters of hydroponically-grown alfalfa (Medicago sativa) under toluene contamination stress. Journal of Plant Process and Function 6:271–80.
  • Sharma, P., and R. S. Dubey. 2005. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation 46 (3):209–21.
  • Tahira, A., B. Rashad-Mukhtar, S. Muhammad-Adnan, P. Muhammad-Aslam, A. Chaudhary-Muhammad, A. Muhammad-Anjum, and J. Muhammad- Mansoor. 2015. Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiologiae Plantarum 37:6.
  • Tester, M., and R. Davenport. 2003. Na + tolerance and Na + transport in higher plants. Annals of Botany 91 (5):503–27. doi: 10.1093/aob/mcg058.
  • Tuna, A. L., C. Kaya, D. Higgs, B. M. Amador, S. Aydemir, and A. R. Girgin. 2008. Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany 62 (1):10–6.
  • Tuteja, N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology 428:419–38. doi: 10.1016/S0076-6879(07)28024-3.
  • Wang, H. L., C. H. Li, and Y. C. Liang. 2001. Agricultural utilization of silicon in China. In Silicon in agriculture, ed. L. E. Datnoff, G. H. Snyder and G. H. Korndorfer, 343–52. Amsterdam: Elsevier.
  • Zhao, D., H. Zhaojun, J. Tao, and C. Han. 2013. Silicon application enhances the mechanical strength of inflorescence shoot in herbaceous peony (Paeonia lactiflora Pall.). Scientia Horticulturae 151:165–72.
  • Zhu, J. K.2007. Plant salt stress. John Wiley and Sons ltd.
  • Zhu, Z., G. Wei, J. Li, Q. Qian, and J. Yu. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science 167 (3):527–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.