188
Views
4
CrossRef citations to date
0
Altmetric
Research Article

An integrated plant nutrition system (IPNS) for corn in the Mid-Atlantic USA

ORCID Icon, , , , , & show all
Pages 704-722 | Received 26 May 2020, Accepted 12 Aug 2020, Published online: 23 Nov 2020

References

  • Abdulameer, O. Q., and S. A. Ahmed. 2019. Role of humic acid in improving growth characters of corn under water stress. The Iraqi Journal of Agricultural Science 50 (1):420–30.
  • Abou-Aly, H. E., and M. A. Mady. 2009. Complemented effect of humic acid and biofertilizers on wheat (Triticum aestivum L.) productivity. Annals of Agricultural Science Moshtohor 47 (1):1–12.
  • Adesemoye, A. O., and J. W. Kloepper. 2009. Plant-microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology 85 (1):1–12. doi: 10.1007/s00253-009-2196-0.
  • Adesemoye, A. O., H. A. Torbert, and J. W. Kloepper. 2008. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Canadian Journal of Microbiology 54 (10):876–86. doi: 10.1139/w08-081.
  • Ahmed, S. 1995. Agriculture-fertilizer interface in Asia: Issues of growth and sustainability: Honolulu, Hawaii: Science Publishers.
  • Aldesuquy, H. S. 2000. Effect of indol-3-yl acetic acid on photosynthetic characteristics of wheat flag leaf during grain filling. Photosynthetica 38 (1):135–41.
  • Aulakh, M. S., and C. A. Grant. 2008. Integrated nutrient management for sustainable crop production. Boca Raton, FL: CRC Press.doi: 10.1201/9780367803216.
  • Ayas, H., and F. Gulser. 2005. The effects of sulfur and humic acid on yield components and macronutrient contents of spinach (Spinacia Oleracea Var. Spinoza). Journal of Biological Sciences 5 (6):801–4.
  • Baldotto, L. E., and M. A. Baldotto. 2014. Adventitious rooting on the Brazilian red-cloak and sanchezia after application of indole-butyric and humic acids. Horticultura Brasileira 32 (4):434–9. doi: 10.1590/S0102-053620140000400010.
  • Baloach, N., M. Yousaf, W. P. Akhter, S. Fahad, B. Ullah, G. Qadir, and Z. I. Ahmed. 2014. Integrated effect of phosphate solubilizing bacteria and humic acid on physiomorphic attributes of maize. International Journal of Current Microbiology and Applied Sciences 3:549–54.
  • Baltzoi, P., I. Tsirogiannis, D. Dimou, O. Kostoula, P. Yfanti, and G. Patakioutas. 2015. Effect of Symbiotic Microorganisms on Turfgrass under Two Irrigation Regimes. International Journal of Plant & Soil Science 8 (2):1–9. doi: 10.9734/IJPSS/2015/19359.
  • Barea, J. M., M. Toro, and R. Azcón. 2007. The use of 32P isotopic dilution techniques to evaluate the interactive effects of phosphate-solubilizing bacteria and mycorrhizal fungi at increasing plant P availability. In First International Meeting on Microbial Phosphate Solubilization. Developments in Plant and Soil Sciences. Vol. 102, eds. E. Velázquez and C. Rodríguez-Barrueco. Dordrecht: Springer. 10.1007/978-1-4020-5765-6_33
  • Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances 16 (4):729–70. doi: 10.1016/S0734-9750(98)00003-2.
  • Bhattacharjee, R. B., A. Singh, and S. N. Mukhopadhyay. 2008. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: Prospects and challenges. Applied Microbiology and Biotechnology 80 (2):199–209. doi: 10.1007/s00253-008-1567-2.
  • Brann, D. E., D. L. Holshouser, and G. L. Mullins. 2000. Agronomy handbook. Pub. No. 424–100. Blacksburg, VA: Virginia Coop. Ext.
  • Bulgari, R., G. Cocetta, A. Trivellini, P. Vernieri, and A. Ferrante. 2015. Biostimulants and crop responses: A review. Biological Agriculture & Horticulture 31 (1):1–17. doi: 10.1080/01448765.2014.964649.
  • Calvo, P., L. Nelson, and J. W. Kloepper. 2014. Agricultural uses of plant biostimulants. Plant and Soil 383 (1–2):3–41. doi: 10.1007/s11104-014-2131-8.
  • Canellas, L. P., D. M. Balmori, L. O. Médici, N. O. Aguiar, E. Campostrini, R. C. C. Rosa, A. R. Façanha, and F. L. Olivares. 2013. A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant and Soil 366 (1–2):119–32. doi: 10.1007/s11104-012-1382-5.
  • Canellas, L. P., D. J. Dantas, N. O. Aguiar, L. E. P. Peres, A. Zsögön, F. L. Olivares, L. B. Dobbss, A. R. Façanha, A. Nebbioso, and A. Piccolo. 2011. Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Annals of Applied Biology 159 (2):202–11.
  • Canellas, L. P., and F. L. Olivares. 2014. Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture 1 (1):3. doi: 10.1186/2196-5641-1-3.
  • Canellas, L. P., F. L. Olivares, N. O. Aguiar, D. L. Jones, A. Nebbioso, P. Mazzei, and A. Piccolo. 2015. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae 196:15–27. doi: 10.1016/j.scienta.2015.09.013.
  • Canellas, L. P., L. R. L. Teixeira Junior, L. B. Dobbss, C. A. Silva, L. O. Medici, D. B. Zandonadi, and A. R. Façanha. 2008. Humic acids crossinteractions with root and organic acids. Annals of Applied Biology 153 (2):157–166.
  • Cerezini, P., B. H. Kuwano, M. B. dos Santos, F. Terassi, M. Hungria, and M. A. Nogueira. 2016. Strategies to promote early nodulation in soybean under drought. Field Crops Research 196:160–7.
  • Chang, L., Y. Wu, WWei Xu, A. Nikbakht, and Y. Xia. 2012. Effects of calcium and humic acid treatment on the growth and nutrient uptake of Oriental lily. African Journal of Biotechnology 11 (9):2218–22.
  • Chen, Y., and T. Aviad. 1990. Effects of humic substances on plant growth 1. In Humic substances in soil and crop sciences: Selected readings, eds. P. MacCarthy, C. E. Clapp, R. L. Malcolm, and P. R. Bloom, 161–86. Madison, WI: Soil Science Society of America.
  • Ciganda, V., A. Gitelson, and J. Schepers. 2009. Non-destructive determination of maize leaf and canopy chlorophyll content. Journal of Plant Physiology 166 (2):157–67. doi: 10.1016/j.jplph.2008.03.004.
  • Contreras-Cornejo, H. A., L. Macías-Rodríguez, C. Cortés-Penagos, and J. López-Bucio. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology 149 (3):1579–92. doi: 10.1104/pp.108.130369.
  • Dadarwal, R. S., N. K. Jain, and D. Singh. 2009. Integrated nutrient management in baby corn (Zea mays). Indian Journal of Agricultural Sciences 79 (12):1023–5.
  • Dal Cortivo, C., G. Barion, M. Ferrari, G. Visioli, L. Dramis, A. Panozzo, and T. Vamerali. 2018. Effects of field inoculation with vam and bacteria consortia on root growth and nutrients uptake in common wheat. Sustainability 10 (9):3286. doi: 10.3390/su10093286.
  • D'Andrea, P. A. 2002. Continuous liquid composting process - CLC and biofertilizer. Microbiol Industry and Trade LTDA. (BR/SP). N° 2099 Registro PI0207342-0 A2.
  • Darvishi, M., F. Paknezhad, A. Kashani, M. Ardakani, and M. Darvishi. 2010. Effect of drought stress and leaf nutrition of some elements of low Pramtrhay chlorophyll fluorescence, RWC, chlorophyll content, membrane stability and yield of maize. Iranian Journal of Crop Sciences 41 (3):531–43.
  • Daur, I., and A. A. Bakhashwain. 2013. Effect of humic acid on growth and quality of maize fodder production. Pakistan Journal of Botany 45 (S1):21–5.
  • de Melo, R. O., M. A. Baldotto, and L. E. B. Baldotto. 2015. Corn initial vigor in response to humic acids from bovine manure and poultry litter. Semina: Ciências Agrárias 36 (1):1863–74.
  • Dobereiner, J., and F. O. Pedrosa. 1987. Nitrogen-fixing bacteria in nonleguminous crop plants. Madison, WI: Science Tech Publishers. 
  • El-Habbasha, S. F., M. Hozayn, and M. A. Khalafallah. 2007. Integration effect between phosphorus levels and biofertilizers on quality and quantity yield of faba bean (Vicia faba L.) in newly cultivated sandy soils. Research Journal of Agriculture and Biological Sciences 3 (6):966–71.
  • El-Mekser, H. K. A., Z. E. M. Mohamed, and M. A. M. Ali. 2014. Influence of humic acid and some micronutrients on yellow corn yield and quality. World Applied Sciences Journal 32 (1):1–11.
  • El-Nemr, M. A., M. El-Desuki, A. M. El-Bassiony, and Z. F. Fawzy. 2012. Response of growth and yield of cucumber plants (Cucumis sativus L.) to different foliar applications of humic acid and bio-stimulators. Australian Journal of Basic and Applied Sciences 6 (3):630–7.
  • Ferrara, G., and G. Brunetti. 2010. Effects of the times of application of a soil humic acid on berry quality of table grape (Vitis vinifera L.) cv Italia. Spanish Journal of Agricultural Research 8 (3):817. doi: 10.5424/1283.
  • Frink, C. R., P. E. Waggoner, and J. H. Ausubel. 1999. Nitrogen fertilizer: Retrospect and prospect. Proceedings of the National Academy of Sciences of the United States of America 96 (4):1175–80. doi: 10.1073/pnas.96.4.1175.
  • Gaikwad, S. B., R. D. Deotale, A. P. Uke, and L. B. Parihar. 2012. Influence of foliar sprays of humic acid through vermicompost wash on growth, yield and yield contributing parameters of maize. Journal of Soils and Crops 22 (1):115–21.
  • Gajdos, É., L. Lévai, S. Veres, and B. Kovács. 2012. Effects of biofertilizers on maize and sunflower seedlings under cadmium stress. Communications in Soil Science and Plant Analysis 43 (1–2):272–9.
  • Gamon, J. A., J. Peñuelas, and C. B. Field. 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment 41 (1):35–44. doi: 10.1016/0034-4257(92)90059-S.
  • Gholami, H., S. Samavat, and Z. O. Ardebili. 2013. The alleviating effects of humic substances on photosynthesis and yield of Plantago ovate in salinity conditions. International Research Journal of Applied and Basic Sciences 4 (7):1683–6.
  • Goel, A. K., R. D. Laura, D. V. Pathak, and A. Goel. 1999. Use of biofertilizers: Potential, constraints and future strategies-a review. International Journal of Tropical Agriculture 17 (1–4):1–18.
  • Goldstein, A. H., and S. T. Liu. 1987. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Nature Biotechnology 5 (1):72–4.
  • Govaerts, B., and N. Verhulst. 2010. The normalized difference vegetation index (NDVI) Greenseeker (TM) handheld sensor: Toward the integrated evaluation of crop management part A: Concepts and case studies. Mexico, DF: CIMMYT.
  • Haghighi, M., M. Kafi, and P. Fang. 2012. Photosynthetic activity and N metabolism of lettuce as affected by humic acid. International Journal of Vegetable Science 18 (2):182–9. doi: 10.1080/19315260.2011.605826.
  • Hodge, A., C. D. Campbell, and A. H. Fitter. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413 (6853):297–9. doi: 10.1038/35095041.
  • Jinjala, V. R., H. M. Virdia, N. N. Saravaiya, and A. D. Raj. 2016. Effect of integrated nutrient management on baby corn (Zea mays L.). Agricultural Science Digest 36 (4):291–4.
  • Kazi, N., R. Deaker, N. Wilson, K. Muhammad, and R. Trethowan. 2016. The response of wheat genotypes to inoculation with Azospirillum brasilense in the field. Field Crops Research 196:368–78. doi: 10.1016/j.fcr.2016.07.012.
  • Khajeeyan, R., S. Amin, M. M. Dehnavi, H. Farajee, and M. A. Kohanmoo. 2019. Physiological and yield responses of Aloe vera plant to biofertilizers under different irrigation regimes. Agricultural Water Management 225:105768. doi: 10.1016/j.agwat.2019.105768.
  • Kim, M. J., C. K. Shim, Y. K. Kim, S. J. Hong, J. H. Park, E. J. Han, J. H. Kim, and S. C. Kim. 2015. Effect of aerated compost tea on the growth promotion of lettuce, soybean, and sweet corn in organic cultivation. The Plant Pathology Journal 31 (3):259–68. doi: 10.5423/PPJ.OA.02.2015.0024.
  • Kuşvuran, V. S. A., and S. Babat. 2011. The effect of different humic acid fertilization on yield and yield components performances of common millet (Panicum miliaceum L.). Scientific Research and Essays 6 (3):663–9.
  • Lamar, R. T., D. C. Olk, L. Mayhew, and P. R. Bloom. 2014. A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products. Journal of AOAC International 97 (3):721–30. doi: 10.5740/jaoacint.13-393.
  • Lichtenthaler, H. K., and U. Rinderle. 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. C R C Critical Reviews in Analytical Chemistry 19 (sup1):S29–S85. doi: 10.1080/15476510.1988.10401466.
  • Liu, C., R. J. Cooper, and D. C. Bowman. 1998. Humic acid application affects photosynthesis, root development, and nutrient content of creeping bentgrass. HortScience 33 (6):1023–5. doi: 10.21273/HORTSCI.33.6.1023.
  • Lobartini, J. C., G. A. Orioli, and K. H. Tan. 1997. Characteristics of soil humic acid fractions separated by ultrafiltration. Communications in Soil Science and Plant Analysis 28 (9-10):787–96.
  • Lotfi, R., H. M. Kalaji, G. R. Valizadeh, E. Khalilvand Behrozyar, A. Hemati, P. Gharavi-Kochebagh, and A. Ghassemi. 2018. Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica, 56:1–9.
  • Malik, P. 2018. Response of barley to fertilizer levels and different combinations of biofertilizers. Doctoral dissertation, CCSHAU.
  • Mastouri, F. 2010. Use of Trichoderma Spp. to improve plant performance under abiotic stresses [Dissertation], Cornell University.
  • Mészáros, I., R. Láposi, S. Veres, E. Bai, G. Lakatos, A. Gáspár, and O. Mile. 2001. Effects of supplemental UV-B and drought stress on photosynthetic activity of sessile oak (Quercus petraea L.). Science Access 3 (1).
  • Mobasser, H. R., and A. Moradgholi. 2012. Mycorrhizal bio-fertilizer applications on yield seed corn varieties in Iran. Annals of Biological Research 3 (2):1109–1116.
  • Moghadam, H. R. T., M. K. Khamene, and H. Zahedi. 2014. Effect of humic acid foliar application on growth and quantity of corn in irrigation withholding at different growth stages. Maydica 59 (2):124–8.
  • Moreno-Salazar, R., I. Sánchez-García, W. Chan-Cupul, E. Ruiz-Sánchez, H. A. Hernández-Ortega, J. Pineda-Lucatero, and D. Figueroa-Chávez. 2019. Plant growth, foliar nutritional content and fruit yield of Capsicum chinense biofertilized with Purpureocillium lilacinum under greenhouse conditions. Scientia Horticulturae, 261:108950.
  • Morris, K., and R. Shearman. 2000. NTEP turfgrass evaluation guidelines. National Turfgrass Evaluation Program.
  • Mukhlis, M., and Y. Lestari. 2014. Effects of biofertilizer “M-star” on land productivity and growth of sweet corn in acid sulphate soil of swampland. AGRIVITA, Journal of Agricultural Science 35 (3):242–8.
  • Nardi, S., G. Concheri, and G. Dell'Agnola. 1996. Chapter 9 - Biological activity of humus. In Humic substances in terrestrial ecosystems, ed. A. Piccolo, 361–406. Amsterdam: Elsevier Science B.V.
  • Ozfidan-Konakci, C., E. Yildiztugay, M. Bahtiyar, and M. Kucukoduk. 2018. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicology and Environmental Safety 155:66–75. doi: 10.1016/j.ecoenv.2018.02.071.
  • Pagnani, G., A. Galieni, F. Stagnari, M. Pellegrini, M. Del Gallo, and M. Pisante. 2020. Open field inoculation with PGPR as a strategy to manage fertilization of ancient Triticum genotypes. Biology and Fertility of Soils 56 (1):111–4.
  • Papageorgiou, G. C., Y. Fujimura, and N. Murata. 1991. Protection of the oxygen-evolving photosystem II complex by glycinebetaine. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1057 (3):361–6.
  • Peoples, M. B., and E. T. Craswell. 1992. Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture. Plant and Soil 141 (1–2):13–39. doi: 10.1007/bf00011308.
  • Pettit, R. E. 2004. Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. CTI Research :1–17.
  • Pishchik, V. N., N. I. Vorobyov, O. S. Walsh, V. G. Surin, and Y. V. Khomyakov. 2016. Estimation of synergistic effect of humic fertilizer and Bacillus subtilis on lettuce plants by reflectance measurements. Journal of Plant Nutrition 39 (8):1074–86. doi: 10.1080/01904167.2015.1061551.
  • Porcar-Castell, A., E. Tyystjärvi, J. Atherton, C. Van der Tol, J. Flexas, E. E. Pfündel, J. Moreno, C. Frankenberg, and J. A. Berry. 2014. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. Journal of Experimental Botany 65 (15):4065–95.
  • Puglisi, E., G. Fragoulis, A. A. Del Re, R. Spaccini, A. Piccolo, G. Gigliotti, D. Said-Pullicino, and M. Trevisan. 2008. Carbon deposition in soil rhizosphere following amendments with compost and its soluble fractions, as evaluated by combined soil-plant rhizobox and reporter gene systems. Chemosphere 73 (8):1292–9. doi: 10.1016/j.chemosphere.2008.07.008.
  • Puglisi, E., G. Fragoulis, P. Ricciuti, F. Cappa, R. Spaccini, A. Piccolo, M. Trevisan, and C. Crecchio. 2009. Effects of a humic acid and its size-fractions on the bacterial community of soil rhizosphere under maize (Zea mays L.). Chemosphere 77 (6):829–37. doi: 10.1016/j.chemosphere.2009.07.077.
  • Raheleh, K., S. Ghassemi, and B. Asghari. 2019. Bio-fertilizer improves physio-biochemical characteristics and grain yield of safflower (Carthamus tinctorius L.) under drought stress. Russian Agricultural Sciences 45 (5):458–63. doi: 10.3103/S1068367419050124.
  • Rezazadeh, H., S. K. Khorasani, and R. S. A. Haghighi. 2012. Effects of humic acid on decrease of phosphorus usage in forage maize var. KSC704 (Zea mays L.). Australian Journal of Agricultural Engineering 3 (2):34.
  • Rose, M. T., A. F. Patti, K. R. Little, A. L. Brown, W. Roy Jackson, and T. R. Cavagnaro. 2014. Chapter 2 - A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. In Advances in Agronomy, ed. D. L. Sparks, 37–89. Amsterdam, Netherlands: Academic Press.
  • Running, S. W., and R. R. Nemani. 1988. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sensing of Environment 24 (2):347–67.
  • Sahu, D., I. Priyadarshani, and B. Rath. 2012. Cyanobacteria–as potential biofertilizer. CIBTech Journal of Microbiology 1:20–6.
  • Sani, B. 2014. Foliar application of humic acid on plant height in canola. APCBEE Procedia 8:82–6. doi: 10.1016/j.apcbee.2014.03.005.
  • Sellers, P. J. 1987. Canopy reflectance, photosynthesis, and transpiration, II. The role of biophysics in the linearity of their interdependence. Remote Sensing of Environment 21 (2):143–83. doi: 10.1016/0034-4257(87)90051-4.
  • Senesi, N., and G. Brunetti. 1996. Chemical and physico-chemical parameters for quality evaluation of humic substances produced during composting. In The science of composting, eds. M. de Bertoldi, P. Sequi, B. Lemmes, and T. Papi, 195–212. Dordrecht: Springer Netherlands.
  • Shand, C. 2007. Plant nutrition for food security. A guide for Integrated Nutrient Management. Fertilizer and Plant Nutrition Bulletin 16:348.
  • Shirkhani, A., and S. Nasrolahzadeh. 2016. Vermicompost and Azotobacter as an ecological pathway to decrease chemical fertilizers in the maize, Zea mays. Bioscience Biotechnology Research Communications 9 (3):382–90. doi: 10.21786/bbrc/9.3/7.
  • Singh, V., Sharma, S. Kunal, S. K. Gosal, R. Choudhary, and R. Singh, Alok Adholeya, Bijay Singh. 2019. Synergistic use of plant growth-promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi, and spectral properties for improving nutrient use efficiencies in wheat (Triticum aestivum L.). Communications in Soil Science and Plant Analysis, 51:1–14.
  • Singh, S., V. Singh, R. Datt Shukla, and K. Singh. 2018. Effect of fertilizer levels and Bio-fertilizer on green cob yield of corn (Zea mays L.). IJCS 6 (2):2188–90.
  • Snapp, S. S., P. L. Mafongoya, and S. Waddington. 1998. Organic matter technologies for integrated nutrient management in smallholder cropping systems of southern Africa. Agriculture, Ecosystems & Environment 71 (1–3):185–200. doi: 10.1016/S0167-8809(98)00140-6.
  • Sun, Q., W. Ding, Y. Yang, J. Sun, and Q. Ding. 2016. Humic acids derived from leonardite-affected growth and nutrient uptake of corn seedlings. Communications in Soil Science and Plant Analysis 47 (10):1275–82.
  • Theerawitaya, C., R. Tisarum, T. Samphumphung, C. Kirdmanee, and S. Cha-Um. 2017. Physio-morphological changes and fruit yield traits of Cavendish banana under organic farming management in the North region of Thailand. XIII International Symposium on Plant Bioregulators in Fruit Production 1206.
  • Tilman, D. 1998. The greening of the green revolution. Nature 396 (6708):211–2.
  • Tóth, V. R., I. Mészáros, S. Veres, and J. Nagy. 2002. Effects of the available nitrogen on the photosynthetic activity and xanthophyll cycle pool of maize in field. Journal of Plant Physiology 159 (6):627–34. doi: 10.1078/0176-1617-0640.
  • Varanini, Z., and R. Pinton. 1995. Humic substances and plant nutrition. In Progress in botany: Structural botany physiology genetics taxonomy geobotany/Fortschritte der Botanik Struktur Physiologie Genetik Systematik Geobotanik, eds. H. D. Behnke, U. Lüttge, K. Esser, J. W. Kadereit, and M. Runge, 97–117. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Vaughan, D. 1974. A possible mechanism for humic acid action on cell elongation in root segments of Pisum sativum under aseptic conditions. Soil Biology and Biochemistry 6 (4):241–7. doi: 10.1016/0038-0717(74)90058-3.
  • Vaughan, D., and R. E. Malcolm. 1985. Influence of humic substances on growth and physiological processes. In Soil organic matter and biological activity, 37–75. Switzerland: Springer.
  • Veres, S., L. Léva, I. Mészáros, and É. Gajdos. 2007. The effects of bio-fertilizers and nitrogen nutrition on the physiology of maize. Cereal Research Communications 35 (2):1297–300.
  • Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255 (2):571–86.
  • Viana, T. V. D. A., J. G. A. Lima, G. Gomes de Sousa, L. G. P. Neto, and B. M. d Azevedo. 2014. Growth, gas exchange and yield of corn when fertigated with bovine biofertilizer. Revista Caatinga 27 (3):106–14.
  • Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications 7 (3):737–50.[0737:HAOTGN]2.0.CO;2. doi: 10.1890/1051-0761(1997)007.[10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2]
  • Wang, R., K. Cherkauer, and L. Bowling. 2016. Corn response to climate stress detected with satellite-based NDVI time series. Remote Sensing 8 (4):269.
  • Weller, D. M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology 97 (2):250–6. doi: 10.1094/phyto-97-2-0250.
  • Wu, S. C., Z. H. Cao, Z. G. Li, K. C. Cheung, and M. H. Wong. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 125 (1–2):155–66. doi: 10.1016/j.geoderma.2004.07.003.
  • Yildirim, E. 2007. Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agriculturae Scandinavica, Section B - Plant Soil Science 57 (2):182–6.
  • Yosefi, K., M. Galavi, M. Ramrodi, and S. R. Mousavi. 2011. Effect of bio-phosphate and chemical phosphorus fertilizer accompanied with micronutrient foliar application on growth, yield and yield components of maize (Single Cross 704). Australian Journal of Crop Science 5 (2):175. doi: 10.5539/jas.v3n4p22.
  • Young, C.-C., P. D. Rekha, W.-A. Lai, and A. B. Arun. 2006. Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnology and Bioengineering 95 (1):76–83. doi: 10.1002/bit.20957.
  • Zarabi, M., Alahdadi, I. Gholam Abbas Akbari, and G. A. Akbari. 2011. A study on the effects of different biofertilizer combinations on yield, its components and growth indices of corn (Zea mays L.) under drought stress condition. African Journal of Agricultural Research 6 (3):681–5.
  • Zhang, X., E. H. Ervin, and R. E. Schmidt. 2003. Physiological effects of liquid applications of a seaweed extract and a humic acid on creeping bentgrass. Journal of the American Society for Horticultural Science 128 (4):492–6.
  • Zhang, X., R. E. Schmidt, E. H. Ervin, and S. Doak. 2002. Creeping bentgrass physiological responses to natural plant growth regulators and iron under two regimes. HortScience 37 (6):898–902. doi: 10.21273/HORTSCI.37.6.898.
  • Zhang, R., and T. D. Sharkey. 2009. Photosynthetic electron transport and proton flux under moderate heat stress. Photosynthesis Research 100 (1):29–43. doi: 10.1007/s11120-009-9420-8.
  • Zhu, Y.-G., T. R. Cavagnaro, S. E. Smith, and S. Dickson. 2001. Backseat driving? Accessing phosphate beyond the rhizosphere-depletion zone. Trends in Plant Science 6 (5):194–5. doi: 10.1016/S1360-1385(01)01957-4.
  • Zhu, H., and D. Li. 2018. Using humus on golf course fairways to alleviate soil salinity problems. HortTechnology 28 (3):284–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.