234
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Salt tolerance induced by hydrogen peroxide priming on seed is related to improvement of ion homeostasis and antioxidative defense in sunflower plants

ORCID Icon, ORCID Icon, ORCID Icon, , &
Pages 1207-1221 | Received 16 Jun 2020, Accepted 15 Oct 2020, Published online: 21 Dec 2020

References

  • Abdel Latef, A. A. H., M. F. A. Alhmad, M. Kordrostami, A.-B A.-E. Abo-Baker, and A. Zakir. 2020. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. Journal of Plant Growth Regulation 39 (3):1293–306. doi: 10.1007/s00344-020-10065-9.
  • Abdel Latef, A. A. H., M. Kordrostami, A. Zakir, H. Zaki, and M. Saleh. 2019. Eustress with H2O2 facilitates plant growth by improving tolerance to salt stress in two wheat cultivars. Plants 8 (9):303. doi: 10.3390/plants8090303.
  • Adem, G. D., S. J. Roy, M. Zhou, J. P. Bowman, and S. Shabala. 2014. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biology 14:113. doi: 10.1186/1471-2229-14-113.
  • Anjum, N. A., P. Sharma, S. S. Gill, M. Hasanuzzaman, E. A. Khan, K. Kachhap, A. A. Mohamed, P. Thangavel, G. D. Devi, P. Vasudhevan, et al. 2016. Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants . Environmental Science and Pollution Research International 23 (19):19002–19029.,doi: 10.1007/s11356-016-7309-6.
  • Ashraf, A., and M. R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59 (2):206–216. doi: 10.1016/j.envexpbot.2005.12.006.
  • Azevedo Neto, A. D., R. J. M. C. Nogueira, P. A. Melo Filho, and R. C. Santos. 2010. Physiological and biochemical responses of peanut genotypes to water deficit. Journal of Plant Interactions 5 (1):1–10. doi: 10.1080/17429140902999243.
  • Azevedo Neto, A. D., J. T. Prisco, J. Enéas-Filho, J. V. R. Medeiros, and E. Gomes-Filho. 2005. Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. Journal of Plant Physiology 162 (10):1114–1122. doi: 10.1016/j.jplph.2005.01.007.
  • Azevedo Neto, A. D., J. T. Prisco, and E. Gomes-Filho. 2009. Changes in soluble amino-N, soluble proteins and amino acids in leaves and roots of salt-stressed maize genotypes. Journal of Plant Interactions 4 (2):137–144. doi: 10.1080/17429140902866954.
  • Azevedo Neto, A. D., and J. N. Tabosa. 2000. Salt stress in maize seedlings: Part II Distribution of cationic macronutrients and its relation with sodium. Revista Brasileira de Engenharia Agrícola e Ambiental 4 (2):165–171. doi: 10.1590/S1415-43662000000200006.
  • Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39 (1):205–207. doi: 10.1007/BF00018060.
  • Beers, R. F., and I. W. Sizer, Jr. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal Biological Chemistry 195:133–140.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1-2):248–254. doi: 10.1016/0003-2697(76)90527-3.
  • Cataldo, D. A., M. Maroon, L. E. Schrader, and V. L. Youngs. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis 6 (1):71–80. doi: 10.1080/00103627509366547.
  • Caverzan, A., D. Jardim-Messeder, A. L. Paiva, and M. Margis-Pinheiro. 2019. Ascorbate peroxidases: Scavengers or sensors of hydrogen peroxide signaling? In Redox homeostasis in plants, ed. S. K. Panda, and Y. Y. Yamamoto, Vol. 1, 85–115. Cham: Springer International Publishing.
  • Christou, A., G. A. Manganaris, and V. Fotopoulos. 2014. Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environmental and Experimental Botany 107:46–54. doi: 10.1016/j.envexpbot.2014.05.009.
  • Cunha, J. R., M. C. Lima Neto, F. E. L. Carvalho, M. O. Martins, D. Jardim-Messeder, M. Margis-Pinheiro, and J. A. G. Silveira. 2016. Salinity and osmotic stress trigger different antioxidant responses related to cytosolic ascorbate peroxidase knockdown in rice roots. Environmental and Experimental Botany 131:58–67. doi: 10.1016/j.envexpbot.2016.07.002.
  • Demidchik, V., D. Straltsova, S. S. Medvedev, G. A. Pozhvanov, A. Sokolik, and V. Yurin. 2014. Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany 65 (5):1259–1270. doi: 10.1093/jxb/eru004.
  • Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28 (3):350–356. doi: 10.1021/ac60111a017.
  • Faithfull, N. T. 2002. Methods in agricultural chemical analysis: A practical handbook. Wallingford: CABI. doi: 10.1079/9780851996080.0000.
  • Fricke, W. 2020. Energy cost of salinity tolerance in crop plant: Night-time transpiration and growth. New Phytologist 225 (3):1152–65. doi: 10.1111/nph.15773.
  • Furlani, P. R. 1997. Hidroponics In Fertilization and liming recommendations for the state of São Paulo, ed. B. van Raij, H. Cantarella, J.A. Quaggio, and A.M. C. Furlani, Vol. 2, 275–85. Campinas: Instituto Agronômico Campinas.
  • Gaines, T. P., M. B. Parker, and G. J. Gascho. 1984. Automated determination of chlorides in soil and plant tissue by sodium nitrate extraction. Agronomy Journal 76 (3):371–374. doi: 10.2134/agronj1984.00021962007600030005x.
  • Garcia-Mata, C., J. Wang, P. Gajdanowicz, W. Gonzalez, A. Hills, N. Donald, J. Riedelsberger, A. Amtmann, I. Dreyer, and M. R. Blatt. 2010. A minimal cysteine motif required to activate the SKOR K+ Channel of Arabidopsis by the reactive oxygen species H2O2. The Journal of Biological Chemistry 285 (38):29286–29294. doi: 10.1074/jbc.M110.141176.
  • Giannopolitis, C. N., and S. K. Ries. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59 (2):309–314. doi: 10.1104/pp.59.2.309.
  • Gondim, F. A., E. Gomes-Filho, J. H. Costa, N. L. M. Alencar, and J. T. Prisco. 2012. Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiology and Biochemistry 56:62–71. doi: 10.1016/j.plaphy.2012.04.012.
  • Gondim, F. A., E. Gomes-Filho, E. C. Marques, and J. T. Prisco. 2011. Effects of H2O2 on the growth and solutes accumulation in maize plants under salt stress. Revista Ciência Agronômica 42 (2):373–381. doi: 10.1590/S1806-66902011000200016.
  • Guo, J. S., Q. Zhou, X. J. Li, B. J. Yu, and Q. Y. Luo. 2017. Enhancing NO3- supply confers NaCl tolerance by adjusting Cl- uptake and transport in G. max & G. soja. Journal of Soil Science and Plant Nutrition 17 (ahead):0–204. doi: 10.4067/S0718-95162017005000015.
  • Gupta, G., and B. Huang. 2014. Mechanisms of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics 2014:701596– 18. doi: 10.1155/2014/701596.
  • Halliwell, B. 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology 141 (2):312–322. doi: 10.1104/pp.106.077073.
  • Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stochiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125 (1):189–198. doi: 10.1016/0003-9861(68)90654-1.
  • Hossain, M. A., B. Bhattacharjee, S.-M. Armin, P. Qian, W. Xin, W.-Y. Li, D. J. Burritt, M. Fujita, and L.-S. Tran. 2015. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Frontiers in Plant Science 6:420– 19. doi: 10.3389/fpls.2015.00420.
  • Hossain, M. S. 2019. Present scenario of global salt affected soils, its management and importance of salinity research. International Research Journal of Biological Sciences 1:1–3.
  • Howitt, S. M., and M. K. Udvardi. 2000. Structure, function and regulation of ammonium transporters in plants. Biochimica et Biophysica Acta (BBA) - Biomembranes 1465 (1-2):152–170. doi: 10.1016/S0005-2736(00)00136-X.
  • Hu, T., K. Chen, L. Hu, E. Amombo, and J. Fu. 2016. H2O2 and Ca2+-based signaling and associated ion accumulation, antioxidant systems and secondary metabolism orchestrate the response to NaCl stress in perennial ryegrass. Scientific Reports 6:36396. doi: 10.1038/srep36396.
  • Huang, H., F. Ullah, D.-X. Zhou, M. Yi, and Y. Zhao. 2019. Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science 10:800. doi: 10.3389/fpls.2019.00800.
  • Jian, S., Q. Liao, H. Song, Q. Liu, J. E. Lepo, C. Guan, J. Zhang, A. M. Ismail, and Z. Zhang. 2018. NRT1.1-related NH4+ toxicity is associated with a disturbed balance between NH4+ uptake and assimilation. Plant Physiol 178 (4):1473–1488. doi: 10.1104/pp.18.00410.
  • Khan, T. A., M. Yusuf, and Q. Fariduddin. 2015. Seed treatment with H2O2 modifies net photosynthetic rate and antioxidant system in mung bean (Vigna radiata L. Wilczek) plants. Israel Journal of Plant Sciences 62 (3):167–175. doi: 10.1080/07929978.2015.1060806.
  • Khan, T. A., M. Yusuf, and Q. Fariduddin. 2018. Hydrogen peroxide in regulation of plant metabolism: Signalling and its effect under abiotic stress. Photosynthetica 56 (4):1237–1248. doi: 10.1007/s11099-018-0830-8.
  • Liang, W., X. Ma, P. Wan, and L. Liu. 2018. Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications 495 (1):286–291. doi: 10.1016/j.bbrc.2017.11.043.
  • Li, B., M. Tester, and M. Gilliham. 2017. Chloride on the move. Trends in Plant Science 22 (3):236–248. doi: 10.1016/j.tplants.2016.12.004.
  • Li, W. F., D. L. Wang, T. C. Jin, Q. Chang, D. X. Yin, S. M. Xu, B. Liu, and L. X. Liu. 2011. The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Molecular Biology Reporter 29 (2):278–290. doi: 10.1007/s11105-010-0224-y.
  • McKersie, B. D., and Y. Y. Leshem. 1994. Stress and stress coping in cultivated plants. Dordrecht: Kluwer Academic Publishers.
  • Molinari, H. B. C., C. J. Marur, E. Daros, M. K. F. Campos, J. F. R. P. Carvalho, J. C. Bespalhok Filho, L. F. P. Pereira, and L. G. E. Vieira. 2007. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): Osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum 130 (2):218–229. doi: 10.1111/j.1399-3054.2007.00909.x.
  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidases in spinach chloroplasts. Plant and Cell Physiology 22:867–80. doi: 10.1093/oxfordjournals.pcp.a076232.
  • Niu, L., and W. Liao. 2016. Hydrogen peroxide signaling in plant development and abiotic responses: Crosstalk with nitric oxide and calcium. Frontiers in Plant Science 7:230– 14. doi: 10.3389/fpls.2016.00230.
  • Parihar, P., S. Singh, R. Singh, V. P. Singh, and S. M. Prasad. 2015. Effect of salinity stress on plants and its tolerance strategies: A review. Environmental Science and Pollution Research International 22 (6):4056–4075. doi: 10.1007/s11356-014-3739-1.
  • Puniran-Hartley, N., J. Hartley, L. Shabala, and S. Shabala. 2014. Salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance: In planta evidence for cross-tolerance. Plant Physiology and Biochemistry 83:32–39. doi: 10.1016/j.plaphy.2014.07.005.
  • Rodrigues, C. R. F., E. N. Silva, S. L. Ferreira-Silva, E. L. Voigt, R. A. Viégas, and J. A. G. Silveira. 2013. High K+ supply avoids Na+ toxicity and improves photosynthesis by allowing favorable K+:Na+ ratios through the inhibition of Na+ uptake and transport to the shoots of Jatropha curcas plants. Journal of Plant Nutrition and Soil Science 176 (2):157–164. doi: 10.1002/jpln.201200230.
  • Rus, A., B.-h. Lee, A. Muñoz-Mayor, A. Sharkhuu, K. Miura, J.-K. Zhu, R. A. Bressan, and P. M. Hasegawa. 2004. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiology 136 (1):2500–2511. doi: 10.1104/pp.104.042234.
  • Savvides, A., S. Ali, M. Tester, and V. Fotopoulos. 2016. Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends in Plant Science 21 (4):329–340. doi: 10.1016/j.tplants.2015.11.003.
  • Shabala, S., and I. Pottosin. 2014. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum 151 (3):257–279. doi: 10.1111/ppl.12165.
  • Silva, P. C. C., A. D. Azevedo Neto, and H. R. Gheyi. 2019a. Mobilization of seed reserves pretreated with H2O2 during germination and establishment of sunflower seedlings under salinity. Journal of Plant Nutrition 42 (18):2388–2394. doi: 10.1080/01904167.2019.1659349.
  • Silva, P. C. C., A. D. Azevedo Neto, H. R. Gheyi, R. F. Ribas, C. R. R. Silva, and A. M. W. Cova. 2020. Salt-tolerance induced by leaf spraying with H2O2 in sunflower is related to the ion homeostasis balance and reduction of oxidative damage. Heliyon 6 (9):e05008. doi: 10.1016/j.heliyon.2020.e05008.
  • Silva, E. N., J. A. G. Silveira, R. M. Aragão, C. V. Vieira, and F. E. Carvalho. 2019b. Photosynthesis impairment and oxidative stress in Jatropha curcas exposed to drought are partially dependent on decreased catalase activity. Acta Physiologiae Plantarum 41 (1):4. doi: 10.1007/s11738-018-2794-5.
  • Silveira, J. A. G., A. R. B. Melo, M. O. Martins, S. L. Ferreira-Silva, R. M. Aragão, E. N. Silva, and R. A. Viégas. 2012. Salinity affects indirectly nitrate acquisition associated with glutamine accumulation in cowpea roots. Biologia Plantarum 56 (3):575–580. doi: 10.1007/s10535-012-0065-7.
  • Silveira, J. A. G., R. A. Viégas, I. M. A. Rocha, A. C. O. M. Moreira, R. A. Moreira, and J. T. A. Oliveira. 2003. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. Journal of Plant Physiology 160 (2):115–123. doi: 10.1078/0176-1617-00890.
  • Wahid, A., M. Perveen, S. Gelani, and S. M. A. Basra. 2007. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. Journal of Plant Physiology 164 (3):283–294. doi: 10.1016/j.jplph.2006.01.005.
  • Wang, H., L. Shabala, M. Zhou, and S. Shabala. 2018. Hydrogen peroxide-induced root Ca2+ and K+ fluxes correlate with salt tolerance in cereals: Towards the cell-based phenotyping. International Journal of Molecular Sciences 19:1–18. doi: 10.3390/ijms19030702.
  • Weatherburn, M. W. 1967. Phenol-hypochloride reaction for determination of ammonia. Analytical Chemistry 39 (8):971–974. doi: 10.1021/ac60252a045.
  • Wu, H. 2018. Plant salt tolerance and Na+ sensing and transport. The Crop Journal 6 (3):215–225. doi: 10.1016/j.cj.2018.01.003.
  • Yemm, E. W., E. C. Cocking, and R. E. Ricketts. 1955. The determination of amino-acids with ninhydrin. The Analyst 80 (948):209–213. doi: 10.1039/an9558000209.
  • Zhang, F., Y. Wang, Y. Yang, H. Wu, D. Wang, and J. Liu. 2007. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant, Cell & Environment 30 (7):775–785. doi: 10.1111/j.1365-3040.2007.01667.x.
  • Zhu, J.-K. 2016. Abiotic stress signaling and responses in plants. Cell 167 (2):313–324. doi: 10.1016/j.cell.2016.08.029.
  • Zhu, M., M. Zhou, L. Shabala, and S. Shabala. 2017. Physiological end molecular mechanisms mediating xylem Na+ loading in barley in the context of salinity stress tolerance. Plant, Cell & Environment 40 (7):1009–1020. doi: 10.1111/pce.12727.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.