474
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Arbuscular mycorrhizal fungi species differentially regulate plant growth, phosphorus uptake and stress tolerance of soybean in lead contaminated soil

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 1633-1648 | Received 04 Jun 2020, Accepted 29 Dec 2020, Published online: 13 Jan 2021

References

  • Adejumo, S. A., M. B. Ogundiran, and A. O. Togun. 2018. Soil amendment with compost and crop growth stages influenced heavy metal uptake and distribution in maize crop grown on lead-acid battery waste contaminated soil. Journal of Environmental Chemical Engineering 6 (4):4809–19. doi: 10.1016/j.jece.2018.07.027.
  • Adeyemi, N. O., M. O. Atayese, and A. A. Olubode. 2019. Identification and relative abundance of native arbuscular mycorrhizal fungi associated with oil-seed crops and maize (Zea mays L.) in derived savannah of Nigeria. Acta Fytotechnica Zootechnica 22 (3):84–9. doi: 10.15414/afz.2019.22.03.84-89.
  • Adeyemi, N. O., M. O. Atayese, A. A. Olubode, and M. E. Akan. 2020. Effect of commercial arbuscular mycorrhizal fungi inoculant on growth and yield of soybean under controlled and natural field conditions. Journal of Plant Nutrition 43 (4):487–99. doi: 10.1080/01904167.2019.1685101.
  • Adeyemi, N., O. Sakariyawo, and M. Atayese. 2017. Yield and yield attributes responses of soybean (Glycine max L. Merrill) to elevated CO2 and arbuscular mycorrhizal fungi inoculation in the humid transitory rainforest. Notulae Scientia Biologicae 9 (2):233–41. doi: 10.15835/nsb9210002.
  • Alloway, B. J. 1990. Heavy metals in soil. New York: John Wiely and Sons, Inc.
  • Arias, M. S. B., J. J. Peña-Cabriales, A. Alarcón, and M. M. Vega. 2015. Enhanced Pb absorption by Hordeum vulgare L. and Helianthus annuus L. plants inoculated with an arbuscular mycorrhizal fungi consortium. International Journal of Phytoremediation 17 (1–6):405–13. doi: 10.1080/15226514.2014.898023.
  • Balakhnina, I. T., A. Borkowska, M. Nosalewicz, A. Nosalewicz, M. T. Włodarczyk, A. A. Kosobryukhov, and R. I. Fomina. 2016. Effect of temperature on oxidative stress induced by lead in the leaves of Plantago major L. International Agrophysics 30 (3):285–92. doi: 10.1515/intag-2015-0094.
  • Chang, Q., F. W. Diao, Q. F. Wang, L. Pan, Z. H. Dang, and W. Guo. 2018. Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environmental Pollution (Barking, Essex: 1987) 241:607–15. doi: 10.1016/j.envpol.2018.06.003.
  • Cornejo, P., J. Pérez-Tienda, S. Meier, A. Valderas, F. Borie, C. Azcón-Aguilar, and N. Ferrol. 2013. Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biology and Biochemistry 57:925–8. doi: 10.1016/j.soilbio.2012.10.031.
  • Cozzolino, V., A. De Martino, A. Nebbioso, V. Di Meo, A. Salluzzo, and A. Piccolo. 2016. Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi. Environmental Science and Pollution Research International 23 (11):11312–22. doi: 10.1007/s11356-016-6337-6.
  • Cozzolino, V., V. Di Meo, and A. Piccolo. 2013. Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. Journal of Geochemical Exploration 129:40–4. doi: 10.1016/j.gexplo.2013.02.006.
  • Doubková, P., and R. Sudová. 2016. Limited impact of arbuscular mycorrhizal fungi on clones of Agrostis capillaris with different heavy metal tolerance. Applied Soil Ecology 99:78–88. doi: 10.1016/j.apsoil.2015.11.004.
  • Ferrol, N., E. Tamayo, and P. Vargas. 2016. The heavy metal paradox in arbuscular mycorrhizas: From mechanisms to biotechnological applications. Journal of Experimental Botany 67 (22):6253–65. doi: 10.1093/jxb/erw403.
  • Gabarron, M., A. Faz, and J. A. Acosta. 2017. Effect of different industrial activities on heavy metal concentrations and chemical distribution in topsoil and road dust. Environmental Earth Science 76:129. doi: 10.1007/s12665-017-6449-4.
  • Gavito, M. E., Y. C. Abud, Y. M. Santiz, M. M. Trujillo, C. G. Delgado, and J. R. E. Rivera. 2014. Effects of aluminium and lead on the development of Rhizophagus irregularis and roots in root cultures. Environmental Engineering and Management Journal 13 (9):2357–61. doi: 10.30638/eemj.2014.263.
  • Gill, R. A., L. Zang, B. Ali, M. A. Farooq, P. Cui, S. Yang, S. Ali, and W. Zhou. 2015. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–64. doi: 10.1016/j.chemosphere.2014.06.029.
  • Giovannetti, M., P. Fortuna, A. S. Citernesi, S. Morini, and M. P. Nuti. 2001. The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytologist 151 (3):717–24. doi: 10.1046/j.0028-646x.2001.00216.x.
  • Gonzalez-Chavez, C., J. D’Haen, J. Vangronsveld, and J. C. Dodd. 2002. Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant and Soil 240 (2):287–97. doi: 10.1023/A:1015794622592.
  • Gonzalez-Chavez, M. C., R. Carrillo-Gonzalez, S. F. Wright, and K. A. Nichols. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution (Barking, Essex: 1987) 130 (3):317–23. doi: 10.1016/j.envpol.2004.01.004.
  • González-Chávez, M. D. C. A., R. Carrillo-González, A. Cuellar-Sánchez, A. Delgado-Alvarado, J. Suárez-Espinosa, E. Ríos-Leal, F. A. Solis-Dominguez, and I. E. Maldonado-Mendoza. 2019. Phytoremediation assisted by mycorrhizal fungi of a Mexican defunct lead - acid battery recycling site. Science of the Total Environment 650:3134–44.
  • González-Guerrero, M., L. H. Melville, N. Ferrol, J. N. A. Lott, C. Azcon-Aguilar, and R. L. Peterson. 2008. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Canadian Journal of Microbiology 54 (2):103–10. doi: 10.1139/w07-119.
  • Gu, H., Z. Zhou, Y. Gao, X. Yuan, Y. Ai, J. Zhang, W. Zu, A. A. Taylor, S. Nan, and F. Li. 2017. The influences of arbuscular mycorrhizal fungus on phytostabilization of lead/zinc tailings using four plant species. International Journal of Phytoremediation 19 (8):739–45. doi: 10.1080/15226514.2017.1284751.
  • Gupta, V., P. K. Jatav, R. Verma, S. L. Kothari, and S. Kachhwaha. 2017. Nickel accumulation and its effect on growth, physiological and biochemical parameters in millets and oats. Environmental Science and Pollution Research International 24 (30):23915–25. doi: 10.1007/s11356-017-0057-4.
  • Hajiboland, R., N. Aliasgharzad, and R. Barzeghar. 2009. Influence of arbuscular mycorrhizal fungi on uptake of Zn and P by two contrasting rice genotypes. Plant, Soil and Environment 55 (3):93–100. doi: 10.17221/319-PSE.
  • Huang, X. C., L. Wang, and F. Ma. 2017. Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis. Chemosphere 187:221–9. doi:10.1016/j.chemosphere. 2017.08.021
  • Huang, X. C., L. Wang, S. S. Zhu, S. H. Ho, J. T. Wu, P. K. Kalita, and F. Ma. 2018. Unraveling the effects of arbuscular mycorrhizal fungus on uptake, translocation, and distribution of cadmium in Phragmites australis (Cav.) Trin. ex Steud. Ecotoxicology and Environmental Safety 149:43–50. doi: 10.1016/j.ecoenv.2017.11.011.
  • Janouskova, M., and D. Pavlikova. 2010. Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium. Plant and Soil 332:511–20.
  • Jarrah, M., R. Ghasemi-Fasaei, N. Karimian, A. Ronaghi, M. Zarei, and S. Mayel. 2014. Investigation of arbuscular mycorrhizal fungus and EDTA efficiencies on lead phytoremediation by sunflower in a calcareous soil. Bioremediation Journal 18 (1):71–9. doi: 10.1080/10889868.2013.847401.
  • Jiang, Q. Y., F. Zhuo, S. H. Long, H. D. Zhao, D. J. Yang, Z. H. Ye, S. S. Li, and Y. X. Jing. 2016. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Scientific Reports 6:21805. doi: 10.1038/srep21805.
  • Joner, E. J., R. Briones, and C. Leyval. 2000. Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil 226 (2):227–34. 1026565701391. doi: 10.1023/A:.
  • Karimi, A., H. Khodaverdiloo, and M. Rasouli Sadaghiani. 2017. Characterisation of growth and biochemical response of Onopordum acanthium L. under lead stress as affected by microbial inoculation. Chemistry and Ecology 33 (10):963–76. doi: 10.1080/02757540.2017.1391798.
  • Lenoir, I., J. Fontaine, and A. L. H. Sahraoui. 2016. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochemistry 123:4–15. doi: 10.1016/j.phytochem.2016.01.002.
  • Leung, H. M., Z. W. Wang, Z. H. Ye, K. L. Yung, X. L. Peng, and K. C. Cheung. 2013. Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: A review. Pedosphere 23 (5):549–63. doi: 10.1016/S1002-0160(13)60049-1.
  • Leyval, C., K. Turnau, and K. Haselwandter. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7 (3):139–53. doi: 10.1007/s005720050174.
  • Li, H., N. Luo, L. J. Zhang, H. M. Zhao, Y. W. Li, Q. Y. Cai, M. H. Wong, and C. H. Mo. 2016. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Science of the Total Environment 571:1183–90. doi: 10.1016/j.scitotenv.2016.07.124.
  • Li, Z. Y., Z. W. Ma, T. J. van der Kuijp, Z. W. Yuan, and L. Huang. 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. The Science of the Total Environment 468-469:843–53. doi: 10.1016/j.scitotenv.2013.08.090.
  • Liu, G., Y. Yu, J. Hou, W. Xue, X. Liu, Y. Liu, W. Wang, A. Alsaedi, T. Hayat, and Z. Liu. 2014. An ecological risk assessment of heavy metal pollution of the agricultural ecosystem near a lead -acid battery factory. Ecological Indicators 47:210–8. doi: 10.1016/j.ecolind.2014.04.040.
  • Liu, L., J. Li, F. Yue, X. Yan, F. Wang, S. Bloszies, and Y. Wang. 2018. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere 194:495–503. doi: 10.1016/j.chemosphere.2017.12.025.
  • Johnson, N. C., J. H. Graham, and F. A. Smith. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135 (4):575–85. doi: 10.1046/j.1469-8137.1997.00729.x.
  • Nayuki, K., B. Chen, R. Ohtomo, and Y. Kuga. 2014. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microbes and Environments 29 (1):60–6. doi: 10.1264/jsme2.ME13093.
  • Neagoe, A., P. Stancu, A. Nicoară, M. Onete, F. Bodescu, R. Gheorghe, and V. Iordache. 2014. Effects of arbuscular mycorrhizal fungi on Agrostis capillaris grown on amended mine tailing substrate at pot, lysimeter, and field plot scales. Environmental Science and Pollution Research International 21 (11):6859–76. doi: 10.1007/s11356-013-1908-2.
  • Orłowska, E., B. Godzik, and K. Turnau. 2012. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Environmental Pollution (Barking, Essex: 1987) 168:121–30. doi: 10.1016/j.envpol.2012.04.026.
  • Phillips, J. M., and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55 (1):158–61. doi: 10.1016/S0007-1536(70)80110-3.
  • Rafique, N., and S. R. Tariq. 2016. Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields. Environmental Monitoring and Assessment 188 (5):1–10. doi: 10.1007/s10661-016-5309-0.
  • Rodriguez, J. H., M. J. Salazar, L. Steffan, M. L. Pignata, J. Franzaring, A. Klumpp, and A. Fangmeier. 2014. Assessment of Pb and Zn contents in agricultural soils and soybean crops near to a former battery recycling plant in Córdoba, Argentina. Journal of Geochemical Exploration 145:129–34. doi: 10.1016/j.gexplo.2014.05.025.
  • Salazar, M. J., E. Menoyo, V. Faggioli, J. Gem, M. Cabello, J. H. Rodriguez, H. Marro, A. Pardo, M. L. Pignata, and A. G. Becerra. 2018. Pb accumulation in spores of arbuscular mycorrhizal fungi. The Science of the Total Environment 643:238–46. doi: 10.1016/j.scitotenv.2018.06.199.
  • Sheikh-Assadi, M., A. Khandan-Mirkohi, A. Alemardan, and E. Moreno-Jiménez. 2015. Mycorrhizal Limonium sinuatum (L.) mill. enhances accumulation of lead and cadmium. International Journal of Phytoremediation 17 (1–6):556–62. doi: 10.1080/15226514.2014.922928.
  • Smith, S. E., and Read, D. J. 2008. Mycorrhizal Symbiosis, Third Edition. Academic Press. 
  • Smith, S. E., F. A. Smith, and I. Jakobsen. 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133 (1):16–20. doi: 10.1104/pp.103.024380.
  • Tan, S. Y., Q. Y. Jiang, F. Zhuo, H. Liu, Y. T. Wang, S. S. Li, Z. H. Ye, and Y. X. Jing. 2015. Effect of inoculation with Glomus versiforme on cadmium accumulation, antioxidant activities and phytochelatins of Solanum photeinocarpum. PLoS One 10 (7):e0132347. doi: 10.1371/journal.pone.0132347.
  • Wang, F. 2017. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications. Critical Reviews in Environmental Science and Technology 47 (20):1901–57. doi: 10.1080/10643389.2017.1400853.
  • Wang, F. Y., Z. Y. Shi, X. F. Xu, X. G. Wang, and Y. J. Li. 2013. Contribution of AM inoculation and cattle manure to lead and cadmium phytoremediation by tobacco plants. Environmental Science: Processes & Impacts 15 (4):794–801. doi: 10.1039/c3em30937a.
  • Wang, F. Y., L. Wang, Z. Y. Shi, Y. J. Li, and Z. M. Song. 2012. Effects of AM inoculation and organic amendment, alone or in combination, on growth, P nutrition, and heavy-metal uptake of tobacco in Pb-Cd-contaminated soil. Journal of Plant Growth Regulation 31 (4):549–59. doi: 10.1007/s00344-012-9265-9.
  • Wang, W., J. Shi, Q. Xie, Y. Jiang, N. Yu, and E. Wang. 2017. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant 10 (9):1147–58. doi: 10.1016/j.molp.2017.07.012.
  • Wang, X., E. Hoffland, G. Feng, and T. W. Kuyper. 2017. Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize. Frontiers in Plant Science 8:684. doi: 10.3389/fpls.2017.00684.
  • Watts-Williams, S. J., and T. R. Cavagnaro. 2012. Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition. Biology and Fertility of Soils 48 (3):285–94. doi: 10.1007/s00374-011-0621-x.
  • Wiersma, J. V., and T. B. Bailey. 1975. Estimation of leaflet, trifoliate and total leaf areas of soybean. Agronomy Journal 67 (1):26–30. doi: 10.2134/agronj1975.00021962006700010007x.
  • Wu, Q. S., Y. Li, Y. N. Zou, and X. H. He. 2015. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza 25 (2):121–30. doi: 10.1007/s00572-014-0594-3.
  • Wu, S., X. Zhang, B. Chen, Z. Wu, T. Li, Y. Hu, Y. Sun, and Y. Wang. 2016. Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environmental and Experimental Botany 122:10–8. doi: 10.1016/j.envexpbot.2015.08.006.
  • Yang, Y., X. Han, Y. Liang, A. Ghosh, J. Chen, and M. Tang. 2015. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One 10 (12):e0145726. doi: 10.1371/journal.pone.0145726.
  • Zhan, F., Y. He, X. Yue, L. Qin, and Y. Xia. 2016. Effect of mycorrhizal inoculation on plant growth, nutrients and heavy metals uptake by Leucaena leucocephala. Fresenius Environmental Bulletin 25:1760–7.
  • Zhipeng, W., W. Weidong, Z. Shenglu, and W. Shaohua. 2016. Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in Pakchoi (Brassica chinensis L.). Pedosphere 26:13–26.
  • Zhou, J., Z. Zhang, Y. Zhang, Y. Wei, and Z. Jiang. 2018. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS One. 13:1–17.
  • Zhou, X., L. Fu, Y. Xia, L. Zheng, C. Chen, Z. Shen, and Y. Chen. 2017. Arbuscular mycorrhizal fungi enhance the copper tolerance of Tagetes patula through the sorption and barrier mechanisms of intraradical hyphae. Metallomics: Integrated Biometal Science 9 (7):936–48. doi: 10.1039/c7mt00072c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.