170
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Influence of salinity stress on morphological, nutritional and physiological attributes in different cultivars of Prunus amygdalus L.

, &
Pages 1758-1769 | Received 12 Jul 2020, Accepted 21 Sep 2020, Published online: 04 Feb 2021

References

  • Aebi, H. 1984. Catalase in vitro. In Methods in enzymology, 105: 121–6. Academic Press.
  • Agricultural salinity assessment and management. ASCE manuals and reports on engineering practice.
  • Alemán, F., M. Nieves-Cordones, V. Martínez, and F. Rubio. 2011. Root K + acquisition in plants: The Arabidopsis thaliana model. Plant and Cell Physiology 52 (9):1603–12. doi: 10.1093/pcp/pcr096.
  • Association of Official Analytical Chemists. 2005. Official Methods of Analysis. 18th ed. Arlington.
  • Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution. Functional Ecology of Plants 199 (5):361–76. doi: 10.1078/0367-2530-00165.
  • Bernstein, L. 1975. Effects of salinity and sodicity on plant growth. Annual Review of Phytopathology 13 (1):295–312. doi: 10.1146/annurev.py.13.090175.001455.
  • Botella, M. A., V. Martínez, M. Nieves, and A. Cerdá. 1997. Effect of salinity on the growth and nitrogen uptake by wheat seedlings. Journal of Plant Nutrition 20 (6):793–804. doi: 10.1080/01904169709365295.
  • Boukhriss, M. 2006. Olive tree (Olea europaea L. CV. “Chemlali”) under salt stress: Water relations and ions content. Pakistan Journal of Botany 38 (5):1477–84.
  • Bowler, C., M. V. Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology 43 (1):83–116. doi: 10.1146/annurev.pp.43.060192.000503.
  • Bray, E. A., J. Bailey-Serres, and E. Weretilnyk. 2000. Responses to abiotic stresses. Biochemical and Molecular Biology of Plants 4:1158–249.
  • Cakmak, I., and H. Marschner. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology 98 (4):1222–7. doi: 10.1104/pp.98.4.1222.
  • Coolong, T. W., W. M. Randle, H. D. Toler, and C. E. Sams. 2004. Zinc availability in hydroponic culture influences glucosinolate concentrations in Brassica rapa. HortScience 39 (1):84–6. doi: 10.21273/HORTSCI.39.1.84.
  • Dani, V., W. J. Simon, M. Duranti, and R. R. Croy. 2005. Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5 (3):737–45. doi: 10.1002/pmic.200401119.
  • Díaz-Vivancos, P., Rubio, M. Mesonero, V. Periago, P. M. Barceló, R. A. Martínez-Gómez, P. Hernández. and J. A. 2006. The apoplastic antioxidant system in Prunus: Response to long-term plum pox virus infection. Journal of Experimental Botany 57 (14):3813–24. doi: 10.1093/jxb/erl138.
  • Emmami, A. 1996. Plant analysis methods. vol. 182. Technical publication. Soil and Water Research Institute of Iran. 45p.
  • Esfandiari, E.,. F. Shekari, F. Shekari, and M. Esfandiari. 2007. The effect of salt stress on antioxidant enzymes activity and lipid peroxidation on the wheat seedling. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 35 (1):48–56.
  • FAO. 2016. FAOSTATE Agricultural statistic database. http://www.fao.org
  • Garratt, L. C., B. S. Janagoudar, K. C. Lowe, P. Anthony, J. B. Power, and M. R. Davey. 2002. Salinity tolerance and antioxidant status in cotton cultures. Free Radical Biology and Medicine 33 (4):502–11. doi: 10.1016/S0891-5849(02)00838-9.
  • Gharsallah, C., H. Fakhfakh, D. Grubb, and F. Gorsane. 2016. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 8: plw055. doi: 10.1093/aobpla/plw055.
  • Grattan, S. R., and C. M. Grieve. 1998. Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulturae 78 (1–4):127–57. doi: 10.1016/S0304-4238(98)00192-7.
  • Gucci, R., and M. Tattini. 1997. Salinity tolerance in olive. Horticultural Reviews 21:177–214.
  • Gupta, A. S., R. P. Webb, A. S. Holaday, and R. D. Allen. 1993. Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiology 103 (4):1067–73. doi: 10.1104/pp.103.4.1067.
  • Hatami, E., M. Esna-Ashari, and T. Javadi. 2010. Effect of salinity on some gas exchange characteristics of grape (Vitis vinifera) cultivars. International Journal of Agriculture and Biology 12:308–10.
  • Hernandez, J. A., F. J. Corpas, M. Gomez, L. A. Rio, and F. Sevilla. 1993. Salt‐induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiologia Plantarum 89 (1):103–10. doi: 10.1111/j.1399-3054.1993.tb01792.x.
  • Hernandez, J. A., A. Jiménez, P. Mullineaux, and F. Sevilia. 2000. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant, Cell & Environment 23 (8):853–62. doi: 10.1046/j.1365-3040.2000.00602.x.
  • Hniličková, H.,. F. Hnilička, M. Orsák, and V. Hejnák. 2019. Effect of salt stress on growth, electrolyte leakage, Na. + and K. + content in selected plant species. Plant, Soil and Environment 65 (No. 2):90–6. doi: 10.17221/620/2018-PSE.
  • Isayenkov, S. V., and F. J. Maathuis. 2019. Plant salinity stress: Many unanswered questions remain. Frontiers in Plant Science 10 (80):1–11. doi: 10.3389/fpls.2019.00080.
  • Juan, M., R. M. Rivero, L. Romero, and J. M. Ruiz. 2005. Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environmental and Experimental Botany 54 (3):193–201. doi: 10.1016/j.envexpbot.2004.07.004.
  • Koca, H., M. Bor, F. Özdemir, and İ. Türkan. 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany 60 (3):344–51. doi: 10.1016/j.envexpbot.2006.12.005.
  • Marschner, H. 1995. Marschner's mineral nutrition of higher plants. Academic Press.
  • Meloni, D. A., M. A. Oliva, C. A. Martinez, and J. Cambraia. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany 49 (1):69–76. doi: 10.1016/S0098-8472(02)00058-8.
  • Mel, V. C., V. B. Bado, S. Ndiaye, K. Djaman, D. Aissata Bama Nati, B. Manneh, and K. Futakuchi. 2019. Predicting rice yield under salinity stress using K/Na ratio variable in plant tissue. Communications in Soil Science and Plant Analysis 50 (11):1321–9. doi: 10.1080/00103624.2019.1614605.
  • Momenpour, A., A. Imani, D. Bakhshi, and E. Akbarpour. 2018. Evaluation of salinity tolerance of some selected almond genotypes budded on GF677 rootstock. International Journal of Fruit Science 18 (4):410–35. doi: 10.1080/15538362.2018.1468850.
  • Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment 25 (2):239–50. doi: 10.1046/j.0016-8025.2001.00808.x.
  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651–81. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Najafian, S. H., M. Rahemi, and V. Tavallali. 2008. Effect of salinity on tolerance of two bitter almond rootstocks. American Eurasian Journal of Agricultural and Environmental Sciences 3 (2):264–8.
  • Netondo, G. W., J. C. Onyango, and E. Beck. 2004. Sorghum and salinity. Crop Science 44 (3):797–805.
  • Papadakis, I. E., G. Veneti, C. Chatzissavvidis, and I. Therios. 2018. Physiological and growth responses of sour cherry (Prunus cerasus L.) plants subjected to short-term salinity stress. Acta Botanica Croatica 77 (2):197–202. doi: 10.2478/botcro-2018-0012.
  • Qadir, M., E. Quillérou, V. Nangia, G. Murtaza, M. Singh, R. J. Thomas, P. Drechsel, and A. D. Noble. 2014. Economics of salt‐induced land degradation and restoration. Natural Resources Forum 38 (4):282–95. doi: 10.1111/1477-8947.12054.
  • Rebah, F., C. Ouhibi, K. H. Alamer, N. Msilini, M. B. Nasri, R. Stevens, and H. Attia. 2018. Comparison of the responses to NaCl stress of three tomato introgression lines. Acta Biologica Hungarica 69 (4):464–80. doi: 10.1556/018.69.2018.4.8.
  • Reddy, P. S., G. Jogeswar, G. K. Rasineni, M. Maheswari, A. R. Reddy, R. K. Varshney, and P. K. Kishor. 2015. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiology and Biochemistry 94:104–13. doi: 10.1016/j.plaphy.2015.05.014.
  • Rengel, Z. 1992. The role of calcium in salt toxicity. Plant, Cell and Environment 15 (6):625–32. doi: 10.1111/j.1365-3040.1992.tb01004.x.
  • Saadatmand, A. R., Z. Banihashemi, M. Maftoun, and A. R. Sepaskhah. 2007. Interactive effect of soil salinity and water stress on growth and chemical compositions of pistachio nut tree. Journal of Plant Nutrition 30 (12):2037–50. doi: 10.1080/01904160701700483.
  • Sairam, R. K., and A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86 (3):407–21.
  • Saleh, B., T. Allario, D. Dambier, P. Ollitrault, and R. Morillon. 2008. Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Comptes rendus biologies 331 (9):703–10. doi: 10.1016/j.crvi.2008.06.007.
  • Shabala, S., and T. A. Cuin. 2008. Potassium transport and plant salt tolerance. Physiologia Plantarum 133 (4):651–69. doi: 10.1111/j.1399-3054.2007.01008.x.
  • Shaul, O. 2002. Magnesium transport and function in plants: The tip of the iceberg. BioMetals 15 (3):307–21. doi: 10.1023/A:1016091118585.
  • Smith, I. K., T. L. Vierheller, and C. A. Thorne. 1989. Properties and functions of glutathione reductase in plants. Physiologia Plantarum 77 (3):449–56. doi: 10.1111/j.1399-3054.1989.tb05666.x.
  • Talukdar, D. 2011. Modulation of plant growth and leaf biochemical parameters in grass PRA (Lathrus sativus L.) and fenugreek (Trigonella foenum-graecum L.) exposed to NaCl treatments. Indian Journal of Fundamental and Applied Life Sciences 2:20–8.
  • Wilson, C., and J. J. Read. 2006. Effect of mixed-salt salinity on growth and ion relations of a barnyard grass species. Journal of Plant Nutrition 29 (10):1741–53. doi: 10.1080/01904160600897455.
  • Wu, H., X. Zhang, J. P. Giraldo, and S. Shabala. 2018. It is not all about sodium: Revealing tissue specificity and signaling roles of potassium in plant responses to salt stress. Plant and Soil 431 (1/2):1–17. doi: 10.1007/s11104-018-3770-y.
  • Xiong, M., X. Zhang, S. Shabala, L. Shabala, Y. Chen, C. Xiang, M. A. Nawaz, Z. Bie, H. Wu, H. Yi, et al. 2018. Evaluation of salt tolerance and contributing ionic mechanism in nine Hami melon landraces in Xinjiang, China. Scientia Horticulturae 237:277–86. doi: 10.1016/j.scienta.2018.04.023.
  • Zhu, J. K. 2001. Plant salt tolerance. Trends in Plant Science 6 (2):66–71. doi: 10.1016/S1360-1385(00)01838-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.