1,415
Views
40
CrossRef citations to date
0
Altmetric
Review

Arbuscular mycorrhizal symbiosis: plant growth improvement and induction of resistance under stressful conditions

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 1993-2028 | Received 18 Jul 2020, Accepted 29 Dec 2020, Published online: 11 Feb 2021

References

  • Abbas, S. R., S. D. Ahmad, S. M. Sabir, and A. H. Shah. 2014. Detection of drought tolerant sugarcane genotypes (Saccharum officinarum) using lipid peroxidation, antioxidant activity, glycine-betaine and proline contents. Journal of Soil Science and Plant Nutrition 14:243. doi: 10.4067/S0718-95162014005000019.
  • Abdelaziz, M. E., D. Kim, S. Ali, N. V. Fedoroff, and S. Al-Babili. 2017. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K + homeostasis under salt stress conditions. Plant Science: An International Journal of Experimental Plant Biology 263:107–15. doi: 10.1016/j.plantsci.2017.07.006.
  • Abdel-Fattah, G. M., S. A. El-Haddad, E. E. Hafez, and Y. M. Rashad. 2011. Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. Microbiological Research 166 (4):268–81. doi: 10.1016/j.micres.2010.04.004.
  • Abdelmalik, A. M., T. S. Alsharani, A. A. Al-Qarawi, A. I. Ahmed, and I. M. Aref. 2020. Response of growth and drought tolerance of Acacia seyal Del. seedlings to arbuscular mycorrhizal fungi. Plant Soil Environ 66:264–71.
  • Abdel-Rahman, A., E. Mahmoud, A. M. Khalifa, and S. S. Ali, 2016. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: The underutilized research window on muscle ageing. The Journal of Physiology 594 (16):4591–613. doi: 10.1113/JP271471.
  • Aggarwal, A., N. Kadian, A. Tanwar, A. Yadav, and K. K. Gupta. 2011. Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. Journal of Applied and Natural Science 3 (2):340–51. doi: 10.31018/jans.v3i2.211.
  • Aguilera, P., P. Cornejo, F. Borie, J. M. Barea, E. von Baer, and F. Oehl. 2014. Diversity of arbuscular mycorrhizal fungi associated with Triticum aestivum L. plants growing in an Andosol with high aluminum level. Agriculture, Ecosystems & Environment 186:178–84. doi: 10.1016/j.agee.2014.01.029.
  • Ahmad, P., A. Hashem, E. F. Abd-Allah, A. A. Alqarawi, R. John, D. Egamberdieva, and S. Gucel. 2015. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science 6:868. doi: 10.3389/fpls.2015.00868.
  • Ahmad, M., Z. A. Zahir, H. N. Asghar, and M. Asghar. 2011. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology 57 (7):578–89. doi: 10.1139/w11-044.
  • Ahuja, I., R. C. de Vos, A. M. Bones, and R. D. Hall. 2010. Plant molecular stress responses face climate change. Trends in Plant Science 15 (12):664–74. doi: 10.1016/j.tplants.2010.08.002.
  • Akerfelt, M., D. Trouillet, V. Mezger, and L. Sistonen. 2007. Heat shock factors at a crossroad between stress and development. Annals of the New York Academy of Sciences 1113:15–27. doi: 10.1196/annals.1391.005.
  • Akula, R., and G. A. Ravishankar. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6 (11):1720–31. doi: 10.4161/psb.6.11.17613.
  • Al-Arjani, A.-B. F., A. Hashem, and E. F. Abd Allah. 2020. Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss. Saudi Journal of Biological Sciences 27 (1):380–94. doi: 10.1016/j.sjbs.2019.10.008.
  • Albacete, A. A., C. Martínez-Andújar, and F. Pérez-Alfocea. 2014. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnology Advances 32 (1):12–30. doi: 10.1016/j.biotechadv.2013.10.005.
  • Ali, H., E. Khan, and M. A. Sajad. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91 (7):869–81. doi: 10.1016/j.chemosphere.2013.01.075.
  • Ali, S. Z., V. Sandhya, M. Grover, N. Kishore, L. V. Rao, and B. Venkateswarlu. 2009. Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biology and Fertility of Soils 46 (1):45–55. doi: 10.1007/s00374-009-0404-9.
  • Allen, E. B., and M. F. Allen. 1980. Natural re-establishment of vesicular-arbuscular mycorrhizae following stripmine reclamation in Wyoming. Journal of Applied Ecology 17 (1):139–47. doi: 10.2307/2402969.
  • Amanifar, S., M. Khodabandeloo, E. M. Fard, M. S. Askari, and M. Ashrafi. 2019. Alleviation of salt stress and changes in glycyrrhizin accumulation by arbuscular mycorrhiza in liquorice (Glycyrrhiza glabra) grown under salinity stress. Environmental and Experimental Botany 160:25–34. doi: 10.1016/j.envexpbot.2019.01.001.
  • Ambavaram, M. M., S. Basu, A. Krishnan, V. Ramegowda, U. Batlang, L. Rahman, N. Baisakh, and A. Pereira. 2014. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nature Communications 5 (1):14. doi: 10.1038/ncomms6302.
  • Amir, H., A. Lagrange, N. Hassaïne, and Y. Cavaloc. 2013. Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23 (7):585–95. doi: 10.1007/s00572-013-0499-6.
  • Aroca, R., P. Vernieri, and J. M. Ruiz-Lozano. 2008. Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. Journal of Experimental Botany 59 (8):2029–41. doi: 10.1093/jxb/ern057.
  • Arshad, M., B. Shaharoona, and T. Mahmood. 2008. Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18 (5):611–20. doi: 10.1016/S1002-0160(08)60055-7.
  • Ashraf, M., S. Hasnain, and O. Berge. 2006. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil. International Journal of Environmental Science & Technology 3 (1):43–51. doi: 10.1007/BF03325906.
  • Askari-Khorasgani, O., H. Hatterman-Valenti, F. B. Flores, and M. Pessarakli. 2019. Managing plant-environment-symbiont interactions to promote plant performance under low temperature stress. Journal of Plant Nutrition 42 (16):2010–27. doi: 10.1080/01904167.2019.1648682.
  • Avramova, V., H. AbdElgawad, Z. Zhang, B. Fotschki, R. Casadevall, L. Vergauwen, D. Knapen, E. Taleisnik, Y. Guisez, H. Asard, et al. 2015. Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiology 169 (2):1382–96. doi: 10.1104/pp.15.00276.
  • Azcón, R., M. del Carmen Perálvarez, A. Roldán, and J.-M. Barea. 2010. Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microbial Ecology 59 (4):668–77. doi: 10.1007/s00248-009-9618-5.
  • Azcón-Aguilar, C., and J. M. Barea. 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6 (6):457–64. doi: 10.1007/s005720050147.
  • Azimi, R., M. Farzam, M. Pessarakli, and M. Kia Kianian. 2018. Mycorrhiza inoculation effects on seedling establishment, survival and morphological properties of Ziziphora clinopodioides Lam. Journal of Plant Nutrition 41 (20):2692–704. doi: 10.1080/01904167.2018.1509999.
  • Badri, D. V., and J. M. Vivanco. 2009. Regulation and function of root exudates. Plant, Cell & Environment 32 (6):666–81. doi: 10.1111/j.1365-3040.2009.01926.x.
  • Bae, H., R. C. Sicher, M. S. Kim, S.-H. Kim, M. D. Strem, R. L. Melnick, and B. A. Bailey. 2009. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany 60 (11):3279–95. doi: 10.1093/jxb/erp165.
  • Bais, H. P., S.-W. Park, T. L. Weir, R. M. Callaway, and J. M. Vivanco. 2004. How plants communicate using the underground information superhighway. Trends in Plant Science 9 (1):26–32. doi: 10.1016/j.tplants.2003.11.008.
  • Bais, H. P., T. L. Weir, L. G. Perry, S. Gilroy, and J. M. Vivanco. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57:233–66. doi: 10.1146/annurev.arplant.57.032905.105159.
  • Balogh, G., M. Péter, A. Glatz, I. Gombos, Z. Török, I. Horváth, J. L. Harwood, and L. Vígh. 2013. Key role of lipids in heat stress management. FEBS Letters 587 (13):1970–80. doi: 10.1016/j.febslet.2013.05.016.
  • Bano, S. A., and D. Ashfaq. 2013. Role of mycorrhiza to reduce heavy metal stress. Natural Science 05 (12):16–20. doi: 10.4236/ns.2013.512A003.
  • Banuelos, J., A. Alarcón, J. Larsen, S. Cruz-Sánchez, and D. Trejo. 2014. Interactions between arbuscular mycorrhizal fungi and Meloidogyne incognita in the ornamental plant Impatiens balsamina. Journal of Soil Science and Plant Nutrition 14 (ahead):0–74. doi: 10.4067/S0718-95162014005000005.
  • Barea, J. M., and C. Azcón-Aguilar. 1982. Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Applied and Environmental Microbiology 43 (4):810–3. doi: 10.1128/AEM.43.4.810-813.1982.
  • Barea, J. M., and P. Jeffries. 1995. Arbuscular mycorrhizas in sustainable soil-plant systems. In: Mycorrhiza, 521–60. Berlin, Heidelberg: Springer.
  • Barea, J.-M., M. J. Pozo, R. Azcon, and C. Azcon-Aguilar. 2005. Microbial co-operation in the rhizosphere. Journal of Experimental Botany 56 (417):1761–78. doi: 10.1093/jxb/eri197.
  • Barka, E. A., J. Nowak, and C. Clément. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Applied and Environmental Microbiology 72 (11):7246–52. doi: 10.1128/AEM.01047-06.
  • Barnabás, B., K. Jäger, and A. Fehér. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment 31 (1):11–38. doi: 10.1111/j.1365-3040.2007.01727.x.
  • Barnawal, D., N. Bharti, D. Maji, C. S. Chanotiya, and A. Kalra. 2014. ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. Journal of Plant Physiology 171 (11):884–94. doi: 10.1016/j.jplph.2014.03.007.
  • Battini, F., M. Grønlund, M. Agnolucci, M. Giovannetti, and I. Jakobsen. 2017. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Scientific Reports 7 (1):4686. doi: 10.1038/s41598-017-04959-0.
  • Bedini, S., E. Pellegrino, L. Avio, S. Pellegrini, P. Bazzoffi, E. Argese, and M. Giovannetti. 2009. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biology and Biochemistry 41 (7):1491–6. doi: 10.1016/j.soilbio.2009.04.005.
  • Begum, N., C. Qin, M. A. Ahanger, S. Raza, M. I. Khan, N. Ahmed, M. Ashraf, and L. Zhang. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress Tolerance. Frontiers in Plant Science 10:1068. doi: 10.3389/fpls.2019.01068.
  • Behrooz, A., K. Vahdati, F. Rejali, M. Lotfi, S. Sarikhani, and C. Leslie. 2019. Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience 54 (6):1087–92. doi: 10.21273/HORTSCI13961-19.
  • Bencherif, K., Y. Dalpé, and A. L. Hadj-Sahraoui. 2019. Arbuscular mycorrhizal fungi alleviate soil salinity stress in arid and semiarid areas. In: Microorganisms in Saline Environments: Strategies and Functions. Springer, 375–400.
  • Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology 84 (1):11–8. doi: 10.1007/s00253-009-2092-7.
  • Bernardo, L., P. Carletti, F. W. Badeck, F. Rizza, C. Morcia, R. Ghizzoni, Y. Rouphael, G. Colla, V. Terzi, and L. Lucini. 2019. Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiology and Biochemistry: PPB 137:203–12. doi: 10.1016/j.plaphy.2019.02.007.
  • Berta, G., S. Sampo, E. Gamalero, N. Massa, and P. Lemanceau. 2005. Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. European Journal of Plant Pathology 111 (3):279–88. doi: 10.1007/s10658-004-4585-7.
  • Bhattacharyya, P. N., and D. K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology & Biotechnology 28 (4):1327–50. doi: 10.1007/s11274-011-0979-9.
  • Bi, H. H., Y. Y. Song, and R. S. Zeng. 2007. Biochemical and molecular responses of host plants to mycorrhizal infection and their roles in plant defence. Allelopathy Journal 20:15.
  • Bilal, S., R. Shahzad, M. Imran, R. Jan, K. M. Kim, and I.-J. Lee. 2020. Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress. Industrial Crops and Products 143:111931. doi: 10.1016/j.indcrop.2019.111931.
  • Birben, E., U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci. 2012. Oxidative stress and antioxidant defense. World Allergy Organization Journal 5:9–19. doi: 10.1097/WOX.0b013e3182439613.
  • Bita, C. E., and T. Gerats. 2013. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4:273. doi: 10.3389/fpls.2013.00273.
  • Brundrett, M. C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154 (2):275–304. doi: 10.1046/j.1469-8137.2002.00397.x.
  • Cabral, C., S. Ravnskov, I. Tringovska, and B. Wollenweber. 2016. Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant and Soil 408 (1–2):385–99. doi: 10.1007/s11104-016-2942-x.
  • Castell, C., J. Terradas, and J. D. Tenhunen. 1994. Water relations, gas exchange, and growth of resprouts and mature plant shoots of Arbutus unedo L. and Quercus ilex L. Oecologia 98 (2):201–11. doi: 10.1007/BF00341473.
  • Chang, P., K. E. Gerhardt, X.-D. Huang, X.-M. Yu, B. R. Glick, P. D. Gerwing, and B. M. Greenberg. 2014. Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: Implications for phytoremediation of saline soils. International Journal of Phytoremediation 16 (7–12):1133–47. doi: 10.1080/15226514.2013.821447.
  • Chang, W.-S., M. Van De Mortel, L. Nielsen, G. N. De Guzman, X. Li, and L. J. Halverson. 2007. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. Journal of Bacteriology 189 (22):8290–9. doi: 10.1128/JB.00727-07.
  • Chen, M., M. Arato, L. Borghi, E. Nouri, and D. Reinhardt. 2018. Beneficial services of arbuscular mycorrhizal fungi – From ecology to application. Frontiers in Plant Science 9:1270. doi: 10.3389/fpls.2018.01270.
  • Cheng, Z., O. Z. Woody, B. J. McConkey, and B. R. Glick. 2012. Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Applied Soil Ecology 61:255–63. doi: 10.1016/j.apsoil.2011.10.006.
  • Chen, H., and J.-G. Jiang. 2010. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews 18:309–19. doi: 10.1139/A10-014.
  • Chen, S., W. Jin, A. Liu, S. Zhang, D. Liu, F. Wang, X. Lin, and C. He. 2013. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Scientia Horticulturae 160:222–9. doi: 10.1016/j.scienta.2013.05.039.
  • Chen, W., P. Meng, H. Feng, and C. Wang. 2020. Effects of arbuscular mycorrhizal fungi on growth and physiological performance of Catalpa bungei CA Mey. under drought stress. Forests 11 (10):1117. doi: 10.3390/f11101117.
  • Cho, K., H. Toler, J. Lee, B. Ownley, J. C. Stutz, J. L. Moore, and R. M. Augé. 2006. Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. Journal of Plant Physiology 163 (5):517–28. doi: 10.1016/j.jplph.2005.05.003.
  • Clemens, S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212 (4):475–86. doi: 10.1007/s004250000458.
  • Cohen, A. C., R. Bottini, M. Pontin, F. J. Berli, D. Moreno, H. Boccanlandro, C. N. Travaglia, and P. N. Piccoli. 2015. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiologia Plantarum 153 (1):79–90. doi: 10.1111/ppl.12221.
  • Colli Mull, J. G., G. A. de la Riva de la Riva, C.D. Vargas-Sámano, G. Pérez-Machado, and G. Agüero-Chapin. 2017. Plant growth promoting bacteria isolated from a Mexican natural ecosystem induce water stress resistance in maize and sorghum plants. Journal of Microbial & Biochemical Technology 9 (5):209–19. doi: 10.4172/1948-5948.1000367.
  • Compant, S., M. G. Van Der Heijden, and A. Sessitsch. 2010. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology 73 (2):197–214. doi: 10.1111/j.1574-6941.2010.00900.x.
  • Cordier, C., M. J. Pozo, J.-M. Barea, S. Gianinazzi, and V. Gianinazzi-Pearson. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Molecular Plant-Microbe Interactions® 11 (10):1017–28. doi: 10.1094/MPMI.1998.11.10.1017.
  • Cortleven, A., J. E. Leuendorf, M. Frank, D. Pezzetta, S. Bolt, and T. Schmülling. 2019. Cytokinin action in response to abiotic and biotic stresses in plants. Plant, Cell & Environment 42 (3):998–1018. doi: 10.1111/pce.13494.
  • Crépin, A., C. Barbey, A. Cirou, M. Tannières, N. Orange, M. Feuilloley, Y. Dessaux, J.-F. Burini, D. Faure, and X. Latour. 2012. Biological control of pathogen communication in the rhizosphere: A novel approach applied to potato soft rot due to Pectobacterium atrosepticum. Plant and Soil 358 (1–2):27–37. doi: 10.1007/s11104-011-1030-5.
  • Creus, C. M., R. J. Sueldo, and C. A. Barassi. 2004. Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian Journal of Botany 82 (2):273–81. doi: 10.1139/b03-119.
  • Daei, G., M. R. Ardekani, F. Rejali, S. Teimuri, and M. Miransari. 2009. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. Journal of Plant Physiology 166 (6):617–25. doi: 10.1016/j.jplph.2008.09.013.
  • Danneberg, G., C. Latus, W. Zimmer, B. Hundeshagen, H. Schneider-Poetsch, and H. Bothe. 1993. Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). Journal of Plant Physiology 141 (1):33–9. doi: 10.1016/S0176-1617(11)80848-5.
  • Das, K., and A. Roychoudhury. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2:53. doi: 10.3389/fenvs.2014.00053.
  • De Oliveira, V. H., I. Ullah, J. M. Dunwell, and M. Tibbett. 2020. Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environmental and Experimental Botany 171:103925. doi: 10.1016/j.envexpbot.2019.103925.
  • De Vos, M., V. R. Van Oosten, R. M. P. Van Poecke, J. A. Van Pelt, M. J. Pozo, M. J. Mueller, A. J. Buchala, J.-P. Métraux, L. C. Van Loon, M. Dicke, et al. 2005. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions: MPMI 18 (9):923–37. doi: 10.1094/MPMI-18-0923.
  • Deja-Sikora, E., A. Kowalczyk, A. Trejgell, A. Szmidt-Jaworska, C. Baum, L. Mercy, and K. Hrynkiewicz. 2019. Arbuscular mycorrhiza changes the impact of potato virus Y on growth and stress tolerance of Solanum tuberosum L. in vitro. Frontiers in Microbiology 10:2971. doi: 10.3389/fmicb.2019.02971.
  • Deja-Sikora, E., L. Mercy, C. Baum, and K. Hrynkiewicz. 2019. The contribution of endomycorrhiza to the performance of potato virus Y-Infected solanaceous plants: Disease alleviation or exacerbation? Frontiers in Microbiology 10:516. doi: 10.3389/fmicb.2019.00516.
  • Devi, T. S., S. Gupta, and R. Kapoor. 2019. Arbuscular mycorrhizal fungi in alleviation of cold stress in plants. In: Advancing frontiers in mycology & mycotechnology, 435–55. Singapore: Springer.
  • Dien, D. C., T. Mochizuki, and T. Yamakawa. 2019. Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Production Science 22 (4):530–45. doi: 10.1080/1343943X.2019.1647787.
  • Djebaili, R., M. Pellegrini, M. Smati, M. Del Gallo, and M. Kitouni. 2020. Actinomycete strains isolated from saline soils: Plant-growth-promoting traits and inoculation effects on Solanum lycopersicum. Sustainability 12 (11):4617. doi: 10.3390/su12114617.
  • Dodd, I. C., A. A. Belimov, W. Y. Sobeih, V. I. Safronova, D. Grierson, and W. J. Davies. 2004. Will modifying plant ethylene status improve plant productivity in water-limited environments. In: Handbook and Abstracts for the 4th International Science Congress’, Brisbane, Australia, 134.
  • Driedonks, N., J. Xu, J. L. Peters, S. Park, and I. Rieu. 2015. Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Frontiers in Plant Science 6:999. doi: 10.3389/fpls.2015.00999.
  • Driver, J. D., W. E. Holben, and M. C. Rillig. 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 37 (1):101–6. doi: 10.1016/j.soilbio.2004.06.011.
  • Duca, D., J. Lorv, C. L. Patten, D. Rose, and B. R. Glick. 2014. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106 (1):85–125. doi: 10.1007/s10482-013-0095-y.
  • Elhindi, K. M., A. S. El-Din, and A. M. Elgorban. 2017. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi Journal of Biological Sciences 24 (1):170–9. doi: 10.1016/j.sjbs.2016.02.010.
  • El-Khallal, S. M. 2007. Induction and modulation of resistance in tomato plants against Fusarium wilt disease by bioagent fungi (arbuscular mycorrhiza) and/or hormonal elicitors (jasmonic acid & salicylic acid): 2-changes in the antioxidant enzymes, phenolic compounds and pathogen related-proteins. Australian Journal of Basic and Applied Sciences 1:717–32.
  • Estrada-Luna, A. A., and F. T. Davies, Jr. 2003. Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. Journal of Plant Physiology 160 (9):1073–83. doi: 10.1078/0176-1617-00989.
  • Evelin, H., B. Giri, and R. Kapoor. 2012. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22 (3):203–17. doi: 10.1007/s00572-011-0392-0.
  • Evelin, H., R. Kapoor, and B. Giri. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Botany 104 (7):1263–80. doi: 10.1093/aob/mcp251.
  • Fadaei, S., M. Vaziriyeganeh, M. Young, I. Sherr, and J. J. Zwiazek. 2020. Ericoid mycorrhizal fungi enhance salt tolerance in ericaceous plants. Mycorrhiza 30 (4):419–21. doi: 10.1007/s00572-020-00958-8.
  • Fahad, S., A. A. Bajwa, U. Nazir, S. A. Anjum, A. Farooq, A. Zohaib, S. Sadia, W. Nasim, S. Adkins, S. Saud, et al., 2017. Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science 8:1147. doi: 10.3389/fpls.2017.01147.
  • Fahad, S., S. Hussain, A. Matloob, F. A. Khan, A. Khaliq, S. Saud, S. Hassan, D. Shan, F. Khan, N. Ullah, et al. 2015. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regulation 75 (2):391–404. doi: 10.1007/s10725-014-0013-y.
  • Feng, W., H. Lindner, N. E. Robbins, and J. R. Dinneny. 2016. Growing out of stress: The role of cell- and organ-scale growth control in plant water-stress responses. Plant Cell 28 (8):1769–82. doi: 10.1105/tpc.16.00182.
  • Fernández, I., M. Merlos, J. A. López-Ráez, A. Martínez-Medina, N. Ferrol, C. Azcón, P. Bonfante, V. Flors, and M. J. Pozo. 2014. Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. Journal of Chemical Ecology 40 (7):791–803. doi: 10.1007/s10886-014-0473-6.
  • Gamalero, E., G. Berta, and B. R. Glick. 2009. The use of microorganisms to facilitate the growth of plants in saline soils. In: Microbial strategies for crop improvement, 1–22. Berlin, Heidelberg: Springer.
  • García de León, D., M. Moora, M. Öpik, L. Neuenkamp, M. Gerz, T. Jairus, M. Vasar, C. G. Bueno, J. Davison, and M. Zobel. 2016. Symbiont dynamics during ecosystem succession: Co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiology Ecology 92 (7):fiw097. doi: 10.1093/femsec/fiw097.
  • García-Garrido, J. M., and J. A. Ocampo. 2002. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. Journal of Experimental Botany 53 (373):1377–86.
  • Garg, N., and H. Kaur. 2013. Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) M illsp. genotypes colonized by arbuscular mycorrhizal fungi. Journal of Agronomy and Crop Science 199 (2):118–33. doi: 10.1111/j.1439-037X.2012.00533.x.
  • Garg, N., and R. Singla. 2004. Growth, photosynthesis, nodule nitrogen and carbon fixation in the chickpea cultivars under salt stress. Brazilian Journal of Plant Physiology 16 (3):137–46. doi: 10.1590/S1677-04202004000300003.
  • Gianinazzi, S. 1991. Vesicular-arbuscular (endo-) mycorrhizas: Cellular, biochemical and genetic aspects. Agriculture, Ecosystems & Environment 35 (2–3):105–19. doi: 10.1016/0167-8809(91)90047-2.
  • Gianinazzi, S., A. Gollotte, M.-N. Binet, D. van Tuinen, D. Redecker, and D. Wipf. 2010. Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20 (8):519–30. doi: 10.1007/s00572-010-0333-3.
  • Gianinazzi-Pearson, V., E. Dumas-Gaudot, A. Gollotte, A. T. Alaoui, and S. Gianinazzi. 1996. Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytologist 133 (1):45–57. doi: 10.1111/j.1469-8137.1996.tb04340.x.
  • Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43:205–27. doi: 10.1146/annurev.phyto.43.040204.135923.
  • Glick, B. R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research 169 (1):30–9. doi: 10.1016/j.micres.2013.09.009.
  • Gond, S. K., M. S. Torres, M. S. Bergen, Z. Helsel, and J. F. White, Jr. 2015. Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Letters in Applied Microbiology 60 (4):392–9. doi: 10.1111/lam.12385.
  • Grandjean, O., T. Vernoux, P. Laufs, K. Belcram, Y. Mizukami, and J. Traas. 2004. In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. The Plant Cell 16 (1):74–87. doi: 10.1105/tpc.017962.
  • Granier, C., and F. Tardieu. 1999. Water deficit and spatial pattern of leaf development. Variability in responses can be simulated using a simple model of leaf development. Plant Physiology 119 (2):609–20. doi: 10.1104/pp.119.2.609.
  • Guether, M., R. Balestrini, M. Hannah, J. He, M. K. Udvardi, and P. Bonfante. 2009. Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. The New Phytologist 182 (1):200–12. doi: 10.1111/j.1469-8137.2008.02725.x.
  • Gull, A., A. A. Lone, and N. U. I. Wani. 2019. Biotic and abiotic stresses in plants. In: Abiotic and biotic stress in plants. London, UK: IntechOpen.
  • Hamdia, M. A. E.-S., M. A. K. Shaddad, and M. M. Doaa. 2004. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation 44 (2):165–74. doi: 10.1023/B:GROW.0000049414.03099.9b.
  • Hart, M. M., R. J. Reader, and J. N. Klironomos. 2001. Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93 (6):1186–94. doi: 10.2307/3761678.
  • Hatimi, A. 1999. Effect of salinity on the association between root symbionts and Acacia cyanophylla Lind.: Growth and nutrition. Plant and Soil 216 (1/2):93–101. [Mismatch] doi: 10.1023/A:1004745707277.
  • Hause, B., W. Maier, O. Miersch, R. Kramell, and D. Strack. 2002. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiology 130 (3):1213–20. doi: 10.1104/pp.006007.
  • Hause, B., C. Mrosk, S. Isayenkov, and D. Strack. 2007. Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68 (1):101–10. doi: 10.1016/j.phytochem.2006.09.025.
  • Heidari, M., and A. Golpayegani. 2012. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences 11 (1):57–61. doi: 10.1016/j.jssas.2011.09.001.
  • Hemmat Jou, M. H., and A. A. Besalatpour. 2018. Interactive effects of co-inoculation of Bradyrhizobium japonicum strains and mycorrhiza species on soybean growth and nutrient contents in plant. Journal of Plant Nutrition 41 (1):10–8. doi: 10.1080/01904167.2017.1346666.
  • Herbinger, K., M. Tausz, A. Wonisch, G. Soja, A. Sorger, and D. Grill. 2002. Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars. Plant Physiology and Biochemistry 40 (6–8):691–6. doi: 10.1016/S0981-9428(02)01410-9.
  • Hernández, J. A., A. B. Aguilar, B. Portillo, E. López-Gómez, J. M. Beneyto, and M. F. García-Legaz. 2003. The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. Functional Plant Biology: FPB 30 (11):1127–37. doi: 10.1071/FP03098.
  • Hildebrandt, U., M. Kaldorf, and H. Bothe. 1999. The zinc violet and its colonization by arbuscular mycorrhizal fungi. Journal of Plant Physiology 154 (5–6):709–17. doi: 10.1016/S0176-1617(99)80249-1.
  • Hildebrandt, U., M. Regvar, and H. Bothe. 2007. Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68 (1):139–46. doi: 10.1016/j.phytochem.2006.09.023.
  • Ho, I. 1987. Comparison of eight Pisolithus tinctorius isolates for growth rate, enzyme activity, and phytohormone production. Canadian Journal of Forest Research 17 (1):31–5. doi: 10.1139/x87-006.
  • Horn, S., S. Hempel, E. Verbruggen, M. C. Rillig, and T. Caruso. 2017. Linking the community structure of arbuscular mycorrhizal fungi and plants: A story of interdependence? The ISME Journal 11 (6):1400–11. doi: 10.1038/ismej.2017.5.
  • Hu, Y., W. Xie, and B. Chen. 2020. Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chemical and Biological Technologies in Agriculture 7 (1):14. doi: 10.1186/s40538-020-00186-4.
  • Huang, D., M. Ma, Q. Wang, M. Zhang, G. Jing, C. Li, and F. Ma. 2020. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiology and Biochemistry: PPB 149:245–55. doi: 10.1016/j.plaphy.2020.02.020.
  • Huang, Y.-M., A. K. Srivastava, Y.-N. Zou, Q.-D. Ni, Y. Han, and Q.-S. Wu. 2014. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Frontiers in Microbiology 5:682. doi: 10.3389/fmicb.2014.00682.
  • Hückelhoven, R., J. Fodor, C. Preis, and K.-H. Kogel. 1999. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiology 119 (4):1251–60. doi: 10.1104/pp.119.4.1251.
  • Hussain, F., and F. Usman. 2019. Fungal biotic stresses in plants and its control strategy. In: Abiotic and biotic stress in plants. London, UK: IntechOpen.
  • Ingraffia, R., G. Amato, A. S. Frenda, and D. Giambalvo. 2019. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PloS One 14 (3):e0213672. doi: 10.1371/journal.pone.0213672.
  • Janeeshma, E., and J. T. Puthur. 2020. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Archives of Microbiology 202 (1):1–16. doi: 10.1007/s00203-019-01730-z.
  • Javan Gholiloo, M., M. Yarnia, A. H. Ghorttapeh, F. Farahvash, and A. M. Daneshian. 2019. Evaluating effects of drought stress and bio-fertilizer on quantitative and qualitative traits of valerian (valeriana officinalis l.). Journal of Plant Nutrition 42 (13):1417–29. doi: 10.1080/01904167.2019.1628972.
  • Jewell, M. C., B. C. Campbell, and I. D. Godwin. 2010. Transgenic plants for abiotic stress resistance. In: Transgenic crop plants, 67–132. Verlag Berlin Heidelber: Springer.
  • Jha, D., S. Kulshreshtha, and S. Chauhan. 2020. Plant microbial ecology as a potential option for stress management in plants. In: Plant microbe symbiosis, 331–60. Cham: Springer.
  • Jha, Y., and R. B. Subramanian. 2014. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiology and Molecular Biology of Plants : An International Journal of Functional Plant Biology 20 (2):201–7. doi: 10.1007/s12298-014-0224-8.
  • Jia, Y., V. M. Gray, and C. J. Straker. 2004. The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Annals of Botany 94 (2):251–8. doi: 10.1093/aob/mch135.
  • Jogawat, A., D. Bisht, and A. K. Johri. 2019. Root endosymbiont-mediated priming of host plants for abiotic stress tolerance. Molecular Plant Abiotic Stress: Biology and Biotechnology chapter:15:283–300.
  • Jogawat, A., J. Vadassery, N. Verma, R. Oelmüller, M. Dua, E. Nevo, and A. K. Johri. 2016. PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Scientific Reports 6:36765. doi: 10.1038/srep36765.
  • Jung, S. C., A. Martinez-Medina, J. A. Lopez-Raez, and M. J. Pozo. 2012. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology 38 (6):651–64. doi: 10.1007/s10886-012-0134-6.
  • Kang, S.-M., R. Radhakrishnan, A. L. Khan, M.-J. Kim, J.-M. Park, B.-R. Kim, D.-H. Shin, and I.-J. Lee. 2014. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry: PPB 84:115–24. doi: 10.1016/j.plaphy.2014.09.001.
  • Kapoor, R., H. Evelin, T. S. Devi, and S. Gupta. 2019. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers in Plant Science 10:470. doi: 10.3389/fpls.2019.00470.
  • Kasotia, A., A. Varma, and D. K. Choudhary. 2015. Pseudomonas-mediated mitigation of salt stress and growth promotion in Glycine max. Agricultural Research 4 (1):31–41. doi: 10.1007/s40003-014-0139-1.
  • Kayama, M., and T. Yamanaka. 2014. Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus salicina, and Castanopsis cuspidata planted on acidic soil. Trees 28 (2):569–83. doi: 10.1007/s00468-013-0973-y.
  • Khan, M. S., A. Zaidi, and J. Musarrat. 2009. Microbial strategies for crop improvement. Berlin: Springer.
  • Khosravifar, S., F. Farahvash, N. Aliasgharzad, M. Yarnia, and F. R. Khoei. 2020. Effects of different irrigation regimes and two arbuscular mycorrhizal fungi on some physiological characteristics and yield of potato under field conditions. Journal of Plant Nutrition 43 (13):2067–13. doi: 10.1080/01904167.2020.1758133.
  • Kim, S. Y., J.-H. Lim, M. R. Park, Y. J. Kim, T. I. Park, Y. W. Seo, K. G. Choi, and S. J. Yun. 2005. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. Journal of Biochemistry and Molecular Biology 38(2):218–24. doi: 10.5483/bmbrep.2005.38.2.218.
  • Kobierski, M., K. Kondratowicz-Maciejewska, M. Banach-Szott, P. Wojewódzki, and J. M. P. Castejón. 2018. Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. Journal of Soils and Sediments 18 (8):2777–89. doi: 10.1007/s11368-018-1935-1.
  • Kohler, J., J. A. Hernández, F. Caravaca, and A. Roldán. 2009. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany 65 (2–3):245–52. doi: 10.1016/j.envexpbot.2008.09.008.
  • Kokkoris, V., Y. Lekberg, P. M. Antunes, C. Fahey, J. A. Fordyce, S. N. Kivlin, and M. M. Hart. 2020. Codependency between plant and arbuscular mycorrhizal fungal communities: What is the evidence? New Phytologist 228 (3):828–38. doi: 10.1111/nph.16676.
  • Kong, L., X. Gong, X. Zhang, W. Zhang, J. Sun, and B. Chen. 2020. Effects of arbuscular mycorrhizal fungi on photosynthesis, ion balance of tomato plants under saline-alkali soil condition. Journal of Plant Nutrition 43 (5):682–98. doi: 10.1080/01904167.2019.1701029.
  • Krishnamoorthy, R., V. Venkatramanan, M. Senthilkumar, R. Anandham, K. Kumutha, and T. Sa. 2019. Management of heavy metal polluted soils: Perspective of arbuscular mycorrhizal fungi. In: Sustainable green technologies for environmental management. Springer, 67–85.
  • Lata, R., S. Chowdhury, S. K. Gond, and J. F. White. Jr, 2018. Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in Applied Microbiology 66 (4):268–76. doi: 10.1111/lam.12855.
  • Lateef, A. A. H. A., and H. Chaoxing. 2011. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae 127 (3):228–33. doi: 10.1016/j.scienta.2010.09.020.
  • Lawlor, D. W., and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment 25 (2):275–94. doi: 10.1046/j.0016-8025.2001.00814.x.
  • Lebeis, S. L., S. H. Paredes, D. S. Lundberg, N. Breakfield, J. Gehring, M. McDonald, S. Malfatti, T. Glavina del Rio, C. D. Jones, S. G. Tringe, et al. 2015. Plant microbiome salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science (New York, N.Y.) 349 (6250):860–4. doi: 10.1126/science.aaa8764.
  • Lehmann, A., and M. C. Rillig. 2015. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops – A meta-analysis. Soil Biology and Biochemistry 81:147–58. doi: 10.1016/j.soilbio.2014.11.013.
  • Liang, X., L. Zhang, S. K. Natarajan, and D. F. Becker. 2013. Proline mechanisms of stress survival. Antioxidants & Redox Signaling 19 (9):998–1011. doi: 10.1089/ars.2012.5074.
  • Li, Y., Z. Liu, H. Hou, H. Lei, X. Zhu, X. Li, X. He, and C. Tian. 2013. Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiologiae Plantarum 35 (12):3465–75. doi: 10.1007/s11738-013-1382-y.
  • Lin, Y., D. B. Watts, J. W. Kloepper, Y. Feng, and H. A. Torbert. 2020. Influence of plant growth-promoting rhizobacteria on corn growth under drought stress. Communications in Soil Science and Plant Analysis 51 (2):250–64. doi: 10.1080/00103624.2019.1705329.
  • Li, Y., H. Tao, B. Zhang, S. Huang, and P. Wang. 2018. Timing of water deficit limits maize kernel setting in association with changes in the source-flow-sink relationship. Frontiers in plant science 9. Frontiers in Plant Science 9:1326. doi: 10.3389/fpls.2018.01326.
  • Liu, J., I. Maldonado-Mendoza, M. Lopez-Meyer, F. Cheung, C. D. Town, and M. J. Harrison. 2007. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. The Plant Journal: For Cell and Molecular Biology 50 (3):529–44. doi: 10.1111/j.1365-313X.2007.03069.x.
  • Lǚ, L.-H., Y.-N. Zou, and Q.-S. Wu. 2019. Mycorrhizas mitigate soil replant disease of peach through regulating root exudates, soil microbial population, and soil aggregate stability. Communications in Soil Science and Plant Analysis 50 (7):909–21. doi: 10.1080/00103624.2019.1594882.
  • Ludwig-Müller, J. 2010. Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. In: Arbuscular Mycorrhizas: Physiology and Function. Springer, 169–90.
  • Luginbuehl, L. H., G. N. Menard, S. Kurup, H. Van Erp, G. V. Radhakrishnan, A. Breakspear, G. E. Oldroyd, and P. J. Eastmond. 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science (New York, N.Y.) 356 (6343):1175–8. doi: 10.1126/science.aan0081.
  • Madhaiyan, M., S. Poonguzhali, and T. Sa. 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69 (2):220–8. doi: 10.1016/j.chemosphere.2007.04.017.
  • Malekzadeh, P., J. Khara, and S. Farshian. 2007. Copper toxicity influence on antioxidant enzymes activity in tomato plants and role of arbuscular mycorrhizal fungus Glomus etunicatum in the tolerance of toxicity. Pakistan Journal of Biological Sciences 10 (8):1326–2013. doi: 10.3923/pjbs.2007.1326.1330.
  • Malhi, G. S., M. Kaur, P. Kaushik, M. N. Alyemeni, A. A. Alsahli, and P. Ahmad. 2020. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi Journal of Biological Sciences. doi: 10.1016/j.sjbs.2020.12.001.
  • Mardhiah, U., T. Caruso, A. Gurnell, and M. C. Rillig. 2016. Arbuscular mycorrhizal fungal hyphae reduce soil erosion by surface water flow in a greenhouse experiment. Applied Soil Ecology 99:137–40. doi: 10.1016/j.apsoil.2015.11.027.
  • Marshall, J. G., and E. B. Dumbroff. 1999. Turgor regulation via cell wall adjustment in white spruce. Plant Physiology 119 (1):313–20. doi: 10.1104/pp.119.1.313.
  • Martínez-García, L. B., S. J. Richardson, J. M. Tylianakis, D. A. Peltzer, and I. A. Dickie. 2015. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. The New Phytologist 205 (4):1565–76. doi: 10.1111/nph.13226.
  • Marulanda, A., R. Azcón, F. Chaumont, J. M. Ruiz-Lozano, and R. Aroca. 2010. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232 (2):533–43. doi: 10.1007/s00425-010-1196-8.
  • Marulanda, A., R. Porcel, J. M. Barea, and R. Azcón. 2007. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microbial Ecology 54 (3):543–52. doi: 10.1007/s00248-007-9237-y.
  • Massey, K. A., and A. Nicolaou. 2011. Lipidomics of polyunsaturated-fatty-acid-derived oxygenated metabolites. Portland Press Ltd.
  • Maurya, A. K., M. P. Kelly, S. M. Mahaney, and S. K. Gomez. 2018. Arbuscular mycorrhizal symbiosis alters plant gene expression and aphid weight in a tripartite interaction. Journal of Plant Interactions 13 (1):294–305. doi: 10.1080/17429145.2018.1475020.
  • Maya, M. A., and Y. Matsubara. 2013. Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23 (5):381–90. doi: 10.1007/s00572-013-0477-z.
  • Mayak, S., T. Tirosh, and B. R. Glick. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry: PPB 42 (6):565–72. doi: 10.1016/j.plaphy.2004.05.009.
  • McLellan, C. A., T. J. Turbyville, E. K. Wijeratne, A. Kerschen, E. Vierling, C. Queitsch, L. Whitesell, and A. L. Gunatilaka. 2007. A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiology 145 (1):174–82. doi: 10.1104/pp.107.101808.
  • Mikkelsen, B. L., S. Rosendahl, and I. Jakobsen. 2008. Underground resource allocation between individual networks of mycorrhizal fungi. The New Phytologist 180 (4):890–8. doi: 10.1111/j.1469-8137.2008.02623.x.
  • Miller, D. J., and P. E. Fort. 2018. Heat shock proteins regulatory role in neurodevelopment. Frontiers in Neuroscience 12:821 doi: 10.3389/fnins.2018.00821.
  • Miransari, M. 2011. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances 29 (6):645–53. doi: 10.1016/j.biotechadv.2011.04.006.
  • Miransari, M., H. A. Bahrami, F. Rejali, and M. J. Malakouti. 2008. Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biology and Biochemistry 40 (5):1197–206. doi: 10.1016/j.soilbio.2007.12.014.
  • Mitra, D., S. Anđelković, P. Panneerselvam, A. Senapati, T. Vasić, A. N. Ganeshamurthy, M. Chauhan, N. Uniyal, B. Mahakur, and T. K. Radha. 2020. Phosphate-solubilizing microbes and biocontrol agent for plant nutrition and protection: Current perspective. Communications in Soil Science and Plant Analysis 51 (5):645–57. doi: 10.1080/00103624.2020.1729379.
  • Mitra, D., N. Uniyal, P. Panneerselvam, A. Senapati, and A. N. Ganeshamurthy. 2019. Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. International Journal of Life Sciences and Applied Sciences 1:1–10.
  • Mohamed, I., K. E. Eid, M. H. Abbas, A. A. Salem, N. Ahmed, M. Ali, G. M. Shah, and C. Fang. 2019. Use of plant growth promoting Rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicology and Environmental Safety 171:539–48. doi: 10.1016/j.ecoenv.2018.12.100.
  • Molina-Favero, C., C. M. Creus, M. Simontacchi, S. Puntarulo, and L. Lamattina. 2008. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Molecular Plant-Microbe Interactions: MPMI 21 (7):1001–9. doi: 10.1094/MPMI-21-7-1001.
  • Mustafa, G., N. G. Khong, B. Tisserant, B. Randoux, J. Fontaine, M. Magnin-Robert, P. Reignault, and A. L.-H. Sahraoui. 2017. Defence mechanisms associated with mycorrhiza-induced resistance in wheat against powdery mildew. Functional Plant Biology: FPB 44 (4):443–54. doi: 10.1071/FP16206.
  • Mustafa, G., B. Randoux, B. Tisserant, J. Fontaine, M. Magnin-Robert, A. L.-H. Sahraoui, and P. H. Reignault. 2016. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. Mycorrhiza 26 (7):685–97. doi: 10.1007/s00572-016-0698-z.
  • Musyoka, D. M., E. M. Njeru, M. M. Nyamwange, and J. M. Maingi. 2020. Arbuscular mycorrhizal fungi and Bradyrhizobium co-inoculation enhances nitrogen fixation and growth of green grams (Vigna radiata L.) under water stress. Journal of Plant Nutrition 43 (7):1036–47. doi: 10.1080/01904167.2020.1711940.
  • Nadeem, S. M., M. Ahmad, Z. A. Zahir, A. Javaid, and M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances 32 (2):429–48. doi: 10.1016/j.biotechadv.2013.12.005.
  • Nahar, K., B. Bovill, and G. McDonald. 2021. Mycorrhizal colonization in bread wheat varieties differing in their response to phosphorus. Journal of Plant Nutrition 44 (1):29–45. doi: 10.1080/01904167.2020.1793190.
  • Nievola, C. C., C. P. Carvalho, V. Carvalho, and E. Rodrigues. 2017. Rapid responses of plants to temperature changes. Temperature (Austin, TX) 4 (4):371–405. doi: 10.1080/23328940.2017.1377812.
  • Nihorimbere, V., M. Ongena, M. Smargiassi, and P. Thonart. 2011. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnologie, Agronomie, Société et Environnement 15:327–37.
  • Ntengna, Y. F., N. S. Tchameni, R. Fokom, M. L. Sameza, E. Minyaka, M. E. L. Ngonkeu, L. Nana Wakam, F. X. Etoa, and D. Nwaga. 2019. Effects of arbuscular mycorrhiza fungi on stimulation of nutrient content and induction of biochemical defense response in Xanthosoma sagittifolium plants against root rot disease caused by Pythium myriotylum. International Journal of Advance Agricultural Research 7:98-107.
  • Ologundudu, A. F., A. A. Adelusi, and R. O. Akinwale. 2014. Effect of salt stress on germination and growth parameters of rice (Oryza sativa L.). Notulae Scientia Biologicae 6 (2):237–43. doi: 10.15835/nsb.6.2.9163.
  • Olowe, O. M., O. J. Olawuyi, A. A. Sobowale, and A. C. Odebode. 2018. Role of arbuscular mycorrhizal fungi as biocontrol agents against Fusarium verticillioides causing ear rot of Zea mays L.(Maize). Current Plant Biology 15:30–7. doi: 10.1016/j.cpb.2018.11.005.
  • Ortas, I., and M. T. Iqbal. 2019. Mycorrhizal inoculation enhances growth and nutrition of cotton plant. Journal of Plant Nutrition 42 (17):2043–56. doi: 10.1080/01904167.2019.1655042.
  • Ortiz, N., E. Armada, E. Duque, A. Roldán, and R. Azcón. 2015. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. Journal of Plant Physiology 174:87–96. doi: 10.1016/j.jplph.2014.08.019.
  • Oteino, N., R. D. Lally, S. Kiwanuka, A. Lloyd, D. Ryan, K. J. Germaine, and D. N. Dowling. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology 6:745. doi: 10.3389/fmicb.2015.00745.
  • Ozdeniz, E. 2019. The role of free proline and soluble carbohydrates in water gypsum stress on some gypsophyte and gypsovag plants. Planta Daninha 37: 1-7. doi: 10.1590/s0100-83582019370100111.
  • Palmer, C. M., and M. L. Guerinot. 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology 5(5):333–40. doi: 10.1038/nchembio.166.
  • Pandey, V., M. W. Ansari, S. Tula, S. Yadav, R. K. Sahoo, N. Shukla, G. Bains, S. Badal, S. Chandra, A. K. Gaur, et al. 2016. Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta 243 (5):1251–64. doi: 10.1007/s00425-016-2482-x.
  • Pandey, P., V. Irulappan, M. V. Bagavathiannan, and M. Senthil-Kumar. 2017. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science 8:537. doi: 10.3389/fpls.2017.00537.
  • Parihar, M., A. Rakshit, K. Rana, G. Tiwari, and S. S. Jatav. 2020. The effect of arbuscular mycorrhizal fungi inoculation in mitigating salt stress of pea (Pisum Sativum L.). Communications in Soil Science and Plant Analysis 51 (11):1545–59. doi: 10.1080/00103624.2020.1784917.
  • Pérez-de-Luque, A., S. Tille, I. Johnson, D. Pascual-Pardo, J. Ton, and D. D. Cameron. 2017. The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Scientific Reports 7 (1):10. doi: 10.1038/s41598-017-16697-4.
  • Perrot-Rechenmann, C. 2010. Cellular responses to auxin: Division versus expansion. Cold Spring Harbor Perspectives in Biology 2 (5):a001446. doi: 10.1101/cshperspect.a001446.
  • Petrović, G., D. Jovičić, Z. Nikolić, G. Tamindžić, M. Ignjatov, D. Milošević, and B. Milošević. 2016. Comparative study of drought and salt stress effects on germination and seedling growth of pea. Genetika 48 (1):373–81. doi: 10.2298/GENSR1601373P.
  • Pieterse, C. M., D. Van der Does, C. Zamioudis, A. Leon-Reyes, and S. C. Van Wees. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28 (1):489–521. doi: 10.1146/annurev-cellbio-092910-154055.
  • Pinton, R., Z. Varanini, and P. Nannipieri. 2007. The rhizosphere: Biochemistry and organic substances at the soil-plant interface. Boca Raton, FL: CRC press.
  • Porcel, R., R. Aroca, and J. M. Ruiz-Lozano. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. Agronomy for Sustainable Development 32 (1):181–200. doi: 10.1007/s13593-011-0029-x.
  • Porcel, R., and J. M. Ruiz-Lozano. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55 (403):1743–50. doi: 10.1093/jxb/erh188.
  • Pospíšil, P. 2016. Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Frontiers in Plant Science 7:1950. doi: 10.3389/fpls.2016.01950.
  • Posta, K., and N. H. Duc. 2020. Benefits of arbuscular mycorrhizal fungi application to crop production under water scarcity. Drought-Detection and Solutions 2020:25–37.
  • Pozo, M. J., and C. Azcón-Aguilar. 2007. Unraveling mycorrhiza-induced resistance. Current opinion in plant biology 10 (4):393–8. doi: 10.1016/j.pbi.2007.05.004.
  • Pozo, M. J., C. Cordier, E. Dumas-Gaudot, S. Gianinazzi, J. M. Barea, and C. Azcón-Aguilar. 2002. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. Journal of Experimental Botany 53 (368):525–34. doi: 10.1093/jexbot/53.368.525.
  • Pozo, M. J., S. C. Jung, J. A. López-Ráez, and C. Azcón-Aguilar. 2010. Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: The role of plant defence mechanisms. In: Arbuscular mycorrhizas: Physiology and function, 193–207. Dordrecht: Springer.
  • Pozo, M. J., L. C. Van Loon, and C. M. Pieterse. 2004. Jasmonates-signals in plant-microbe interactions. Journal of Plant Growth Regulation 23 (3):211–22. doi: 10.1007/s00344-004-0031-5.
  • Pozo, M. J., A. Verhage, J. García-Andrade, J. M. García, and C. Azcón-Aguilar. 2009. Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Mycorrhizas-functional processes and ecological impact, 123–35. Berlin, Heidelberg: Springer.
  • Priya, C., J. Divya, A. Kumar, and M. Debasis. 2019. Biofertilizer: A sustainable approach for plant and soil health. In Microbial resources for sustainable agriculture, 106-19. Heinrich-Böcking-Straße, Saarbrücken, Germany: Lambert Academic Publishing.
  • Puppi, G., R. Azcón, and G. Höflich. 1994. Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In Impact of Arbuscular Mycorrhizas on sustainable agriculture and natural ecosystems. ALS advances in life sciences, eds.S. Gianinazzi and H. Schüepp, 201-15. Basel: Birkhäuser.
  • Qin, M., Q. Zhang, J. Pan, S. Jiang, Y. Liu, A. Bahadur, Z. Peng, Y. Yang, and H. Feng. 2019. Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass. European Journal of Soil Science 71:84–92. doi: 10.1111/ejss.12815.
  • Quiroga, G., G. Erice, R. Aroca, F. Chaumont, and J. M. Ruiz-Lozano. 2019. Contribution of the arbuscular mycorrhizal symbiosis to the regulation of radial root water transport in maize plants under water deficit. Environmental and Experimental Botany 167:103821. doi: 10.1016/j.envexpbot.2019.103821.
  • Rashad, Y. M., M. A. Abbas, H. M. Soliman, G. Abdel-Fattah, and G. Abdel-Fattah. 2020. Synergy between endophytic Bacillus amyloliquefaciens GGA and arbuscular mycorrhizal fungi induces plant defense responses against white rot of garlic and improves host plant growth. Phytopathologia Mediterranea 59:169–86.
  • Regvar, M., N. Gogala, and P. Zalar. 1996. Effects of jasmonic acid on mycorrhizal Allium sativum. New Phytologist 134 (4):703–7. doi: 10.1111/j.1469-8137.1996.tb04936.x.
  • Reinhardt, D. 2007. Programming good relations-development of the arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology 10 (1):98–105. doi: 10.1016/j.pbi.2006.11.001.
  • Rillig, M. C., and D. L. Mummey. 2006. Mycorrhizas and soil structure. The New Phytologist 171 (1):41–53. doi: 10.1111/j.1469-8137.2006.01750.x.
  • Rillig, M. C., S. F. Wright, and V. T. Eviner. 2002. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant and Soil 238 (2):325–33. [Mismatch] doi: 10.1023/A:1014483303813.
  • Rodríguez, A. A., A. M. Stella, M. M. Storni, G. Zulpa, and M. C. Zaccaro. 2006. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Systems 2:7. doi: 10.1186/1746-1448-2-7.
  • Ruiz-Lozano, J. M., R. Aroca, Á. M. Zamarreño, S. Molina, B. Andreo-Jiménez, R. Porcel, J. M. García-Mina, C. Ruyter-Spira, and J. A. López-Ráez. 2016. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell & Environment 39 (2):441–52. doi: 10.1111/pce.12631.
  • Ruiz-Lozano, J. M., R. Azcon, and M. Gomez. 1996. Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum 98 (4):767–72. doi: 10.1034/j.1399-3054.1996.980413.x.
  • Saibi, W., K. Feki, I. Yacoubi, and F. Brini. 2015. Bridging between proline structure, functions, metabolism, and involvement in organism physiology. Applied Biochemistry and Biotechnology 176 (8):2107–19. doi: 10.1007/s12010-015-1713-0.
  • Sannazzaro, A. I., O. A. Ruiz, E. O. Alberto, and A. B. Menéndez. 2006. Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant and Soil 285 (1–2):279–87. doi: 10.1007/s11104-006-9015-5.
  • Santander, C., A. Ruiz, S. García, R. Aroca, J. Cumming, and P. Cornejo. 2020. Efficiency of two arbuscular mycorrhizal fungal inocula to improve saline stress tolerance in lettuce plants by changes of antioxidant defense mechanisms. Journal of the Science of Food and Agriculture 100 (4):1577–87. doi: 10.1002/jsfa.10166.
  • Saravanakumar, D., and R. Samiyappan. 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Journal of Applied Microbiology 102 (5):1283–92. doi: 10.1111/j.1365-2672.2006.03179.x.
  • Sarma, M., V. Kumar, K. Saharan, R. Srivastava, A. K. Sharma, A. Prakash, V. Sahai, and V. S. Bisaria. 2011. Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. Journal of Applied Microbiology 111 (2):456–66. doi: 10.1111/j.1365-2672.2011.05062.x.
  • Saxena, B., K. Shukla, and B. Giri. 2017. Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In: Arbuscular mycorrhizas and stress tolerance of plants, 67–97. Singapore: Springer.
  • Schoenherr, A. P., E. Rizzo, N. Jackson, P. Manosalva, and S. K. Gomez. 2019. Mycorrhiza-induced resistance in potato involves priming of defense responses against cabbage looper (Noctuidae: Lepidoptera). Environmental Entomology 48 (2):370–81. doi: 10.1093/ee/nvy195.
  • Schouteden, N., D. De Waele, B. Panis, and C. M. Vos. 2015. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: A review of the mechanisms involved. Frontiers in Microbiology 6:1280. doi: 10.3389/fmicb.2015.01280.
  • Schuppler, U., P.-H. He, P. C. John, and R. Munns. 1998. Effect of water stress on cell division and cell-division-cycle 2-like cell-cycle kinase activity in wheat leaves. Plant Physiol 117 (2):667–78. doi: 10.1104/pp.117.2.667.
  • Schutzendubel, A., and A. Polle. 2002. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53 (372):1351–65.
  • Shabani, E., S. Bolandnazar, S. J. Tabatabaei, N. Najafi, S. Alizadeh-Salteh, and Y. Rouphael. 2018. Stimulation in the movement and uptake of phosphorus in response to magnetic P solution and arbuscular mycorrhizal fungi in Ocimum basilicum. Journal of Plant Nutrition 41 (13):1662–73. doi: 10.1080/01904167.2018.1458872.
  • Sharma, P., and R. S. Dubey. 2005. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation 46 (3):209–21. doi: 10.1007/s10725-005-0002-2.
  • Shi-Chu, L., J. Yong, L. Ma-Bo, Z. Wen-Xu, X. Nan, and Z. Hui-Hui. 2019. Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings. Journal of Plant Interactions 14 (1):482–91. doi: 10.1080/17429145.2019.1662101.
  • Shivakrishna, P., K. A. Reddy, and D. M. Rao. 2018. Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi Journal of Biological Sciences 25:285–9. doi: 10.1016/j.sjbs.2017.04.008.
  • Shukla, P. S., P. K. Agarwal, and B. Jha. 2012. Improved salinity tolerance of Arachishypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. Journal of Plant Growth Regulation 31 (2):195–206. doi: 10.1007/s00344-011-9231-y.
  • Shukla, N., R. P. Awasthi, L. Rawat, and J. Kumar. 2012. Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry: PPB 54:78–88. doi: 10.1016/j.plaphy.2012.02.001.
  • Silva, E. C. D., M. F. Silva, R. J. Nogueira, and M. B. Albuquerque. 2010. Growth evaluation and water relations of Erythrina velutina seedlings in response to drought stress. Brazilian Journal of Plant Physiology 22 (4):225–33. doi: 10.1590/S1677-04202010000400002.
  • Silveira, J. A. G., R. de Almeida Viégas, I. M. A. da Rocha, A. C. d O. M. Moreira, R. de Azevedo Moreira, and J. T. A. Oliveira. 2003. Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. Journal of Plant Physiology 160 (2):115–23. doi: 10.1078/0176-1617-00890.
  • Singh, I., and B. Giri. 2017. Arbuscular mycorrhiza mediated control of plant pathogens. In: Mycorrhiza-nutrient uptake, biocontrol, ecorestoration, 131–60. Cham: Springer.
  • Smith, S. E., and D. J. Read. 2010. Mycorrhizal symbiosis. New York: Academic Press.
  • Song, Y., Q. Chen, D. Ci, X. Shao, and D. Zhang. 2014. Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biology 14:111. doi: 10.1186/1471-2229-14-111.
  • Song, Y., D. Chen, K. Lu, Z. Sun, and R. Zeng. 2015. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Frontiers in Plant Science 6:786. doi: 10.3389/fpls.2015.00786.
  • Song, F., G. Song, A. Dong, and X. Kong. 2011. Regulatory mechanisms of host plant defense responses to arbuscular mycorrhiza. Acta Ecologica Sinica 31 (6):322–7. doi: 10.1016/j.chnaes.2011.09.001.
  • Song, Y. Y., M. Ye, C. Y. Li, R. L. Wang, X. C. Wei, S. M. Luo, and R. S. Zeng. 2013. Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. Journal of Chemical Ecology 39 (7):1036–44. doi: 10.1007/s10886-013-0312-1.
  • Sriprang, R., M. Hayashi, H. Ono, M. Takagi, K. Hirata, and Y. Murooka. 2003. Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Applied and Environmental Microbiology 69 (3):1791–6. doi: 10.1128/aem.69.3.1791-1796.2003.
  • Srivastava, S., P. C. Verma, V. Chaudhry, N. Singh, P. C. Abhilash, K. V. Kumar, N. Sharma, and N. Singh. 2013. Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. Journal of Hazardous Materials 262:1039–47. doi: 10.1016/j.jhazmat.2012.08.019.
  • Stumpe, M., J.-G. Carsjens, I. Stenzel, C. Göbel, I. Lang, K. Pawlowski, B. Hause, and I. Feussner. 2005. Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Phytochemistry 66 (7):781–91. doi: 10.1016/j.phytochem.2005.01.020.
  • Su, F., C. Jacquard, S. Villaume, J. Michel, F. Rabenoelina, C. Clément, E. A. Barka, S. Dhondt-Cordelier, and N. Vaillant-Gaveau. 2015. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Frontiers in Plant Science 6:810. doi: 10.3389/fpls.2015.00810.
  • Suarez, C., M. Cardinale, S. Ratering, D. Steffens, S. Jung, A. M. Z. Montoya, R. Geissler-Plaum, and S. Schnell. 2015. Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Applied Soil Ecology 95:23–30. doi: 10.1016/j.apsoil.2015.04.017.
  • Subramanian, P., A. Mageswari, K. Kim, Y. Lee, and T. Sa. 2015. Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Molecular Plant-Microbe Interactions 28 (10):1073–81. doi: 10.1094/MPMI-01-15-0021-R.
  • Sun, C., J. M. Johnson, D. Cai, I. Sherameti, R. Oelmüller, and B. Lou. 2010. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology 167 (12):1009–17. doi: 10.1016/j.jplph.2010.02.013.
  • Sziderics, A. H., F. Rasche, F. Trognitz, A. Sessitsch, and E. Wilhelm. 2007. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Canadian Journal of Microbiology 53 (11):1195–202. doi: 10.1139/W07-082.
  • Talaat, N. B., and B. T. Shawky. 2011. Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. Journal of Plant Nutrition and Soil Science 174 (2):283–91. doi: 10.1002/jpln.201000051.
  • Talbi, S., M. C. Romero-Puertas, A. Hernández, L. Terrón, A. Ferchichi, and L. M. Sandalio. 2015. Drought tolerance in a Saharian plant Oudneya africana: Role of antioxidant defences. Environmental and Experimental Botany 111:114–26. doi: 10.1016/j.envexpbot.2014.11.004.
  • Tardieu, F., and R. Tuberosa. 2010. Dissection and modelling of abiotic stress tolerance in plants. Current Opinion in Plant Biology 13 (2):206–12. doi: 10.1016/j.pbi.2009.12.012.
  • Tedersoo, L., M. Bahram, and M. Zobel. 2020. How mycorrhizal associations drive plant population and community biology. Science 367 (6480):eaba1223. doi: 10.1126/science.aba1223.
  • Tezara, W., V. J. Mitchell, S. D. Driscoll, and D. W. Lawlor. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401 (6756):914–7. doi: 10.1038/44842.
  • Timmusk, S., I. A. Abd El-Daim, L. Copolovici, T. Tanilas, A. Kännaste, L. Behers, E. Nevo, G. Seisenbaeva, E. Stenström, and Ü. Niinemets. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles. PloS One 9 (5):e96086. doi: 10.1371/journal.pone.0096086.
  • Tiwari, S., C. Lata, P. S. Chauhan, and C. S. Nautiyal. 2016. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiology and Biochemistry 99:108–17. doi: 10.1016/j.plaphy.2015.11.001.
  • Turrini, A., A. Bedini, M. B. Loor, G. Santini, C. Sbrana, M. Giovannetti, and L. Avio. 2018. Local diversity of native arbuscular mycorrhizal symbionts differentially affects growth and nutrition of three crop plant species. Biology and Fertility of Soils 54 (2):203–17. doi: 10.1007/s00374-017-1254-5.
  • Vacheron, J., S. Renoud, D. Muller, O. O. Babalola, and C. Prigent-Combaret. 2015. Alleviation of abiotic and biotic stresses in plants by Azospirillum. In: Handbook for Azospirillum, 333–65. Cham: Springer,
  • Van Geel, M., M. De Beenhouwer, B. Lievens, and O. Honnay. 2016. Crop-specific and single-species mycorrhizal inoculation is the best approach to improve crop growth in controlled environments. Agronomy for Sustainable Development 36 (2):37. doi: 10.1007/s13593-016-0373-y.
  • Van Nuland, M. E., R. C. Wooliver, A. A. Pfennigwerth, Q. D. Read, I. M. Ware, L. Mueller, J. A. Fordyce, J. A. Schweitzer, and J. K. Bailey. 2016. Plant–soil feedbacks: Connecting ecosystem ecology and evolution. Functional Ecology 30 (7):1032–42. doi: 10.1111/1365-2435.12690.
  • Van Wees, S. C., S. Van der Ent, and C. M. Pieterse. 2008. Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology 11 (4):443–8. doi: 10.1016/j.pbi.2008.05.005.
  • Vargas, L., A. B. Santa Brígida, J. P. Mota Filho, T. G. de Carvalho, C. A. Rojas, D. Vaneechoutte, M. Van Bel, L. Farrinelli, P. C. G. Ferreira, K. Vandepoele, et al. 2014. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: A transcriptomic view of hormone pathways. PLoS One 9 (12):e114744. doi: 10.1371/journal.pone.0114744.
  • Varinderpal-Singh, S. S., G. S. K. Kunal, R. Choudhary, R. Singh, and A. B.-S. Adholeya. 2020. Synergistic use of plant growth-promoting Rhizobacteria, Arbuscular mycorrhizal fungi, and spectral properties for improving nutrient use efficiencies in wheat (Triticum aestivum L.). Communications in Soil Science and Plant Analysis 51:14–27. doi: 10.1080/00103624.2019.1689259.
  • Venkateswarlu, B., and A. K. Shanker. 2009. Climate change and agriculture: Adaptation and mitigation stategies. Indian Journal of Agronomy 54:226–30.
  • Vickers, N. J. 2017. Animal communication: When I'm calling you, will you answer too? Current Biology 27 (14):R713–R715. doi: 10.1016/j.cub.2017.05.064.
  • Vieira, L. C., D. K. da Silva, I. R. da Silva, C. M. Gonçalves, D. M. de Assis, F. Oehl, and G. A. da Silva. 2019. Ecological aspects of arbuscular mycorrhizal fungal communities in different habitat types of a Brazilian mountainous area. Ecological Research 34 (1):182–92. doi: 10.1111/1440-1703.1061.
  • Vivas, A., J. M. Barea, B. Biro, and R. Azcon. 2006. Effectiveness of autochthonous bacterium and mycorrhizal fungus on Trifolium growth, symbiotic development and soil enzymatic activities in Zn contaminated soil. Journal of Applied Microbiology 100 (3):587–98. doi: 10.1111/j.1365-2672.2005.02804.x.
  • Vos, C., N. Schouteden, D. van Tuinen, O. Chatagnier, A. Elsen, D. De Waele, B. Panis, and V. Gianinazzi-Pearson. 2013. Mycorrhiza-induced resistance against the root–knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biology and Biochemistry 60:45–54. doi: 10.1016/j.soilbio.2013.01.013.
  • Wahid, A., S. Gelani, M. Ashraf, and M. R. Foolad. 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany 61 (3):199–223. doi: 10.1016/j.envexpbot.2007.05.011.
  • Wang, Z., G. Li, H. Sun, L. Ma, Y. Guo, Z. Zhao, H. Gao, and L. Mei. 2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open 7 (11):bio035279. doi: 10.1242/bio.035279.
  • Wang, S., Q. S. Wu, and X. H. He. 2016. Exogenous easily extractable glomalin-related soil protein promotes soil aggregation, relevant soil enzyme activities and plant growth in trifoliate orange. Plant, Soil and Environment 61 (2):66–71. doi: 10.17221/833/2014-PSE.
  • Weraduwage, S. M., J. Chen, F. C. Anozie, A. Morales, S. E. Weise, and T. D. Sharkey. 2015. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Frontiers in Plant Science 6:167. doi: 10.3389/fpls.2015.00167.
  • Wilson, G. W., C. W. Rice, M. C. Rillig, A. Springer, and D. C. Hartnett. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters 12 (5):452–61. doi: 10.1111/j.1461-0248.2009.01303.x.
  • Wu, Q. S. 2011. Mycorrhizal efficacy of trifoliate orange seedlings on alleviating temperature stress. Plant, Soil and Environment 57 (10):459–64. doi: 10.17221/59/2011-PSE.
  • Wu, L.-M., Y. Fang, H.-N. Yang, and L.-Y. Bai. 2019. Effects of drought-stress on seed germination and growth physiology of quinclorac-resistant Echinochloa crusgalli. PLoS ONE 14 (4):e0214480. doi: 10.1371/journal.pone.0214480.
  • Wu, Q.-S., C.-Y. Liu, D.-J. Zhang, Y.-N. Zou, X.-H. He, and Q.-H. Wu. 2016. Mycorrhiza alters the profile of root hairs in trifoliate orange. Mycorrhiza 26 (3):237–47. doi: 10.1007/s00572-015-0666-z.
  • Wu, Q. S., G. H. Li, and Y. N. Zou. 2011. Roles of arbuscular mycorrhizal fungi on growth and nutrient acquisition of peach (Prunus persica L. Batsch) seedlings. Journal of Animal and Plant Science 21:746–50.
  • Wu, Q.-S., A. K. Srivastava, and Y.-N. Zou. 2013. AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae 164:77–87. doi: 10.1016/j.scienta.2013.09.010.
  • Wu, Q.-S., R.-X. Xia, and Y.-N. Zou. 2006. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. Journal of Plant Physiology 163 (11):1101–10. doi: 10.1016/j.jplph.2005.09.001.
  • Xian-Can, Z., S. Feng-bin, and X. Hong-Wen. 2010. Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress. Yingyong Shengtai Xuebao 21: 470–5.
  • Xin, Z., and J. Browse. 2000. Cold comfort farm: The acclimation of plants to freezing temperatures. Plant, Cell & Environment 23 (9):893–902. doi: 10.1046/j.1365-3040.2000.00611.x.
  • Xu, H., Y. Lu, and X. Zhu. 2016. Effects of arbuscular mycorrhiza on osmotic adjustment and photosynthetic physiology of maize seedlings in black soils region of northeast China. Brazilian Archives of Biology and Technology 59: 1–9. doi: 10.1590/1678-4324-2016160392.
  • Yang, Y., X. Han, Y. Liang, A. Ghosh, J. Chen, and M. Tang. 2015. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PloS one 10. doi: 10.1371/journal.pone.0145726.
  • Yang, J., J. W. Kloepper, and C.-M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science 14 (1):1–4. doi: 10.1016/j.tplants.2008.10.004.
  • Yang, S.-J., Z.-L. Zhang, Y.-X. Xue, Z.-F. Zhang, and S.-Y. Shi. 2014. Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings. Botanical Studies 55 (1):70. doi: 10.1186/s40529-014-0070-6.
  • Yao, L., Z. Wu, Y. Zheng, I. Kaleem, and C. Li. 2010. Growth promotion and protection against salt stress by Pseudomonas putida Rs. 198 on cotton. European Journal of Soil Biology 46 (1):49–54. doi: 10.1016/j.ejsobi.2009.11.002.
  • Yeasmin, R., S. P. Bonser, S. Motoki, and E. Nishihara. 2019. Arbuscular mycorrhiza influences growth and nutrient uptake of asparagus (Asparagus officinalis L.) under heat stress. HortScience 54 (5):846–50. doi: 10.21273/HORTSCI13587-18.
  • Zarea, M. J., S. Hajinia, N. Karimi, E. M. Goltapeh, F. Rejali, and A. Varma. 2012. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry 45:139–46. doi: 10.1016/j.soilbio.2011.11.006.
  • Zeng, R.-S. 2006. Disease resistance in plants through mycorrhizal fungi induced allelochemicals. In: Allelochemicals: Biological control of plant pathogens and diseases, 181–92. Dordrecht: Springer.
  • Zhan, F., B. Li, M. Jiang, X. Yue, Y. He, Y. Xia, and Y. Wang. 2018. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environmental Science and Pollution Research International 25 (24):24338–47. doi: 10.1007/s11356-018-2487-z.
  • Zhang, W., B. Jiang, W. Li, H. Song, Y. Yu, and J. Chen. 2009. Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulturae 122 (2):200–8. doi: 10.1016/j.scienta.2009.05.013.
  • Zhang, H.-H., M. Tang, H. Chen, C.-L. Zheng, and Z.-C. Niu. 2010. Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. European Journal of Soil Biology 46 (5):306–11. doi: 10.1016/j.ejsobi.2010.05.006.
  • Zhang, Y. F., P. Wang, Y. F. Yang, Q. Bi, S. Y. Tian, and X. W. Shi. 2011. Arbuscular mycorrhizal fungi improve reestablishment of Leymus chinensis in bare saline-alkaline soil: Implication on vegetation restoration of extremely degraded land. Journal of Arid Environments 75 (9):773–8. doi: 10.1016/j.jaridenv.2011.04.008.
  • Zhang, W., and R. Yu. 2014. Molecule mechanism of stem cells in Arabidopsis thaliana. Pharmacognosy Reviews 8 (16):105–12. doi: 10.4103/0973-7847.134243.
  • Zhang, X., H. Zhang, Y. Zhang, Y. Liu, H. Zhang, and M. Tang. 2020. Arbuscular mycorrhizal fungi alter carbohydrate distribution and amino acid accumulation in Medicago truncatula under lead stress. Environmental and Experimental Botany 171:103950. doi: 10.1016/j.envexpbot.2019.103950.
  • Zhang, X. H., Y.-G. Zhu, B. D. Chen, A. J. Lin, S. E. Smith, and F. A. Smith. 2005. Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. Journal of Plant Nutrition 28 (12):2065–77. doi: 10.1080/01904160500320871.
  • Zhi-Lin, Y., D. Chuan-Chao, and C. Lian-Qing. 2007. Regulation and accumulation of secondary metabolites in plant-fungus symbiotic system. African Journal of Biotechnology 6: 1266–1271.
  • Zhu, X., F. Song, and H. Xu. 2010. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20 (5):325–32. doi: 10.1007/s00572-009-0285-7.
  • Zobel, M., and M. Öpik. 2014. Plant and arbuscular mycorrhizal fungal (AMF) communities–which drives which? Journal of Vegetation Science 25 (5):1133–40. doi: 10.1111/jvs.12191.
  • Zong, K., J. Huang, K. Nara, Y. Chen, Z. Shen, and C. Lian. 2015. Inoculation of ectomycorrhizal fungi contributes to the survival of tree seedlings in a copper mine tailing. Journal of Forest Research 20 (6):493–500. doi: 10.1007/s10310-015-0506-1.
  • Zou, Y.-N., P. Wang, C.-Y. Liu, Q.-D. Ni, D.-J. Zhang, and Q.-S. Wu. 2017. Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Scientific Reports 7 (1):41134. doi: 10.1038/srep41134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.