2,282
Views
29
CrossRef citations to date
0
Altmetric
Review

Determination of soil nutrients (NPK) using optical methods: a mini review

, , , &
Pages 1826-1839 | Received 10 Aug 2020, Accepted 29 Sep 2020, Published online: 16 Feb 2021

References

  • Agarwal, S. N., Bhangale, K. Dhanur, S. Gavhane, V. A. Chakkarwar and Dr. M. B. Nagori. 2018. In 9th IEEE international conference on computing communication and networking technologies (ICCCNT), Bengaluru, India, 1503–9.
  • Aitkenhead, M. J., G. J. Gaskin, N. Lafouge, and C. Hawes. 2017. PHYLIS: A low-cost portable visible range spectrometer for soil and plants. Sensors 17 (1):99. doi: 10.3390/s17010099.
  • Basu, P. K. 2011. Soil testing in India, ed. 1–217. New Delhi: D. o. A. C. M. o. Agriculture, Government of India.
  • Bogrekci, I., and W. S. Lee. 2005. Improving phosphorus sensing by eliminating soil particle size effect in spectral measurement. Transactions of the American Society of Agricultural Engineers (ASAE) 48 (5):1971–8. doi: 10.13031/2013.19989.
  • Bogrekci, I., and W. S. Lee. 2007. Comparison of ultraviolet, visible, and near infrared sensing for soil phosphorus. Biosystems Engineering 96 (2):293–9. doi: 10.1016/j.biosystemseng.2006.11.001.
  • Chacon Iznaga, A., M. R. Orozco, E. A. Alcantara, M. C. Pairol, Y. E. D. Sicilia, J. Baerdemaeker, and W. Saeys. 2014. Vis/NIR spectroscopic measurement of selected soil fertility parameters of Cuban agricultural Cambisols. Biosystems Engineering 125:105–21. doi: 10.1016/j.biosystemseng.2014.06.018.
  • Chappelle, E. W., J. E. McMurtrey, F. M. Wood, and W. W. Newcomb. 1984. Laser-induced fluorescence of green plants. 2: LIF caused by nutrient deficiencies in corn. Applied Optics 23 (1):139. doi: 10.1364/ao.23.000139.
  • Chen, L., S. Huang, Y. Sun, E. Zhu, and K. Wang. 2019. Rapid identification of potassium nutrition stress in rice based on machine vision and object-oriented segmentation. Journal of Spectroscopy 2019:1–8. doi: 10.1155/2019/4623545.
  • Couteaux, M. M., B. Berg, and P. Rovira. 2003. Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils. Soil Biology and Biochemistry 35 (12):1587–600. doi: 10.1016/j.soilbio.2003.08.003.
  • Dalal, R. C., and R. J. Henry. 1986. Simultaneous determination of moisture, organic-carbon, and total nitrogen by near-infrared reflectance spectrophotometry. Soil Science Society of America Journal 50 (1):120–3. doi: 10.2136/sssaj1986.03615995005000010023x.
  • Dinakaran, J., A. Bidalia, A. Kumar, M. Hanief, A. Meena, and K. S. Rao. 2016. Near-infrared-spectroscopy for determination of carbon and nitrogen in Indian soils. Communications in Soil Science and Plant Analysis 47 (12):1503–16. doi: 10.1080/00103624.2016.1194990.
  • Dong, T., S. Xiao, Y. He, Y. Tang, P. Nie, L. Lin, F. Qu, and S. Luo. 2018. Rapid and quantitative determination of soil water-soluble nitrogen based on surface-enhanced Raman spectroscopy analysis. Applied Sciences 8 (5):701. doi: 10.3390/app8050701.
  • Du, X., J. Wang, D. Dong, and X. Zhao. 2019. Development and testing of a portable soil nitrogen detector based on near-infrared spectroscopy. In 2019 IEEE 8th joint international information technology and artificial intelligence conference (ITAIC), 822–6.
  • Ehsani, M. R., S. K. Upadhyaya, D. Slaughter, S. Shafii, and M. Pelletier. 1999. A NIR technique for rapid determination of soil mineral nitrogen. Precision Agriculture 1 (2):219–36. doi: 10.1023/A:1009916108990.
  • Feng Y., Li X., Wang W., Liu C. 2011. Detection of Soil Total Nitrogen by Vis-SWNIR Spectroscopy. In: Li D., Liu Y., Chen Y. (eds) Computer and Computing Technologies in Agriculture IV. CCTA 2010. IFIP Advances in Information and Communication Technology, vol 347. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-18369-0_20
  • Fystro, G. 2002. The prediction of C and N content and their potential mineralisation in heterogeneous soil samples using Vis–NIR spectroscopy and comparative methods. Plant and Soil 246 (2):139–49. doi: 10.1023/A:1020612319014.
  • Guerrero, C., R. Zornoza, I. Gomez, and J. Mataix-Beneyto. 2010. Spiking of NIR regional models using samples from target sites: Effect of model size on prediction accuracy. Geoderma 158 (1–2):66–77. doi: 10.1016/j.geoderma.2009.12.021.
  • Hu, G., K. A. Sudduth, D. He, D. B. Myers, and M. V. Nathan. 2016. Soil phosphorus and potassium estimation by reflectance spectroscopy. Transactions of the American Society of Agricultural and Biological Engineers (ASABE) 59 (1):97–105.
  • Hussain, F., and K. A. Malik. 1985. Evaluation of alkaline permanganate method and its modification as an index of soil nitrogen availability. Plant and Soil 84 (2):279–82. doi: 10.1007/BF02143191.
  • Jahn, B. R., R. Linker, S. K. Upadhyaya, A. Shaviv, D. C. Slaughter, and I. Shmulevich. 2006. Mid-infrared spectroscopic determination of soil nitrate content. Biosystems Engineering 94 (4):505–15. doi: 10.1016/j.biosystemseng.2006.05.011.
  • Jin, X., S. Li, W. Zhang, J. Zhu, and J. Sun. 2020. Prediction of soil-available potassium content with visible near-infrared ray spectroscopy of different pretreatment transformations by the boosting algorithms. Applied Sciences 10 (4):1520. doi: 10.3390/app10041520.
  • Kawamura, K., Y. Tsujimoto, T. Nishigaki, A. Andriamananjara, M. Rabenarivo, H. Asai, T. Rakotoson, and T. Razafimbelo. 2019. Laboratory visible and near-infrared spectroscopy with genetic algorithm-based partial least squares regression for assessing the soil phosphorus content of upland and lowland rice fields in Madagascar. Remote Sensing 11 (5):506. doi: 10.3390/rs11050506.
  • Larar, A. M., L. Zheng, W. S. Lee, M. Li, A. Katti, C. Yang, H. Li, H. Sun, H.-S. Chung, M. Suzuki, et al. 2012. Analysis of soil phosphorus concentration based on Raman spectroscopy. In Multispectral, hyperspectral, and ultraspectral remote sensing technology, techniques and applications IV.
  • Lee, W. S., and I. Bogrekci Inventors. 2007, Jan 18. Portable Raman sensor for soil nutrient detection. United States patent US 0013908 A1.
  • Lee, W. S., J. F. Sanchez, R. S. Mylavarapu, and J. S. Choe. 2003. Estimating chemical properties of Florida soils using spectral reflectance. Transactions of the American Society of Agricultural Engineers (ASAE) 46 (5):1443–53.
  • Li, H., S. Jia, and Z. Le. 2019. Quantitative analysis of soil total nitrogen using hyperspectral imaging technology with extreme learning machine. Sensors 19 (20):4355. doi: 10.3390/s19204355.
  • Linker, R., A. Kenny, A. Shaviv, L. Singher, and I. Shmulevich. 2004. Fourier transform infrared-attenuated total reflection nitrate determination of soil pastes using principal component regression, partial least squares, and cross-correlation. Applied Spectroscopy 58 (5):516–20. doi: 10.1366/000370204774103327.
  • Liu, R. T., L. Q. Tao, B. Liu, X. G. Tian, M. A. Mohammad, Y. Yang, and T. L. Ren. 2016. A miniaturized on-chip colorimeter for detecting NPK elements. Sensors 16 (8):1234. doi: 10.3390/s16081234.
  • Masrie, M., A. Z. M. Rosli, R. Sam, Z. Janin, and M. K. Nordin. 2018. Integrated optical sensor for NPK nutrient of soil detection. In 5th international conference on smart instrumentation, measurement and applications (ICSIMA).
  • Masrie, M., M. S. A. Rosman, R. Sam, and Z. Janin. 2017. Detection of nitrogen, phosphorus, and potassium (NPK) nutrients of soil using optical transducer. In 2017 IEEE 4th international conference on smart instrumentation, measurement and application (ICSIMA), 1–4.
  • McCoy, D. E., and S. J. Donohue. 1979. Evaluation of commercial soil test kits for field use. Communications in Soil Science and Plant Analysis 10 (4):631–52. doi: 10.1080/00103627909366925.
  • Monteiro-Silva, F., P. A. S. Jorge, and R. C. Martins. 2019. Optical sensing of nitrogen, phosphorus and potassium: A spectrophotometrical approach toward smart nutrient deployment. Chemosensors, MDP 7:51.
  • Mouazen, A. M., J. D. Baerdemaeker, and H. Ramon. 2006. Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual-near infrared spectroscopy. Journal of Near Infrared Spectroscopy 14 (3):189–99. doi: 10.1255/jnirs.614.
  • Mouazen, A. M., B. Kuang, J. D. Baerdemaeker, and H. Ramon. 2010. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 158 (1–2):23–31. doi: 10.1016/j.geoderma.2010.03.001.
  • Mukherjee, S., and S. Laskar. 2019. Vis–NIR-based optical sensor system for estimation of primary nutrients in soil. Journal of Optics 48 (1):87–103. doi: 10.1007/s12596-019-00517-1.
  • Nie, P., T. Dong, Y. He, and F. Qu. 2017. Detection of soil nitrogen using near infrared sensors based on soil pretreatment and algorithms. Sensors (Sensors) 17 (5):1102. doi: 10.3390/s17051102.
  • Pansu, M., and J. Gautheyrou. 2006. Handbook of soil analysis: Mineralogical, organic and inorganic methods. Berlin: Springer.
  • Peng, Y., L. Zhao, Y. Hu, G. Wang, L. Wang, and Z. Liu. 2019. Prediction of soil nutrient contents using visible and near-infrared reflectance spectroscopy. ISPRS International Journal of Geo-Information 8 (10):437. doi: 10.3390/ijgi8100437.
  • Qiao, Y., and S. Zheng. 2011. Near-infrared spectroscopy technology for soil nutrients detection based on LS-SVM. In 5th computer and computing technologies in agriculture (CCTA), 325–35.
  • Shah, D. R., and E. K. M. Pawar. 2009. Laboratory testing procedure for soil and water sample analysis, eds. W. R. D. D. P. Irrigation Research and Development. SSD/GL/01 (02): 1-134
  • Shi, Y., X. Yu, Q. Feng, and Y. Wang. 2015. Design of portable near infrared soil nutrient measuring instrument. Optik 126 (2):230–3. doi: 10.1016/j.ijleo.2014.08.048.
  • Stenberg, B., Raphael, A. V. Rossel, A. M. Mouazen, and J. Wetterlind. 2010. Visible and near infrared spectroscopy in soil science. Advances in Agronomy 107:163–215.
  • Tagad, C. K., K. U. Hyeong, R. C. Aiyer, P. More, K. Taesung, S. H. Moh, A. Kulkarni, and S. G. Sabharwal. 2013. A sensitive hydrogen peroxide optical sensor based on polysaccharide stabilized silver nanoparticles. Royal Society of Chemistry (RSC) Advances 3 (45):22940–22943. doi:10.1039/c3ra44547j.
  • Udelhoven, T., C. Emmerling, and T. Jarmer. 2003. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant and Soil 251 (2):319–29. doi: 10.1023/A:1023008322682.
  • Vagen, T.- G., K. D. Shepherd, and M. G. Walsh. 2006. Sensing landscape level change in soil fertility following deforestation and conversion in the highlands of Madagascar using Vis–NIR spectroscopy. Geoderma 133 (3–4):281–94. doi: 10.1016/j.geoderma.2005.07.014.
  • Vogel, C., M. Ramsteiner, R. Sekine, A. Doolette, and C. Adam. 2017. Characterization of phosphorus compounds in soils by deep ultraviolet (DUV) Raman microspectroscopy. Journal of Raman Spectroscopy 48 (6):867–71. doi: 10.1002/jrs.5115.
  • Wetterlind, J., B. Stenberg, and M. Soderstrom. 2010. Increased sample point density in farm soil mapping by local calibration of visible and near infrared prediction models. Geoderma 156 (3–4):152–60. doi: 10.1016/j.geoderma.2010.02.012.
  • Xiao, S., and Y. He. 2019. Application of near-infrared spectroscopy and multiple spectral algorithms to explore the effect of soil particle sizes on soil nitrogen detection. Molecules 24 (13):2486. doi: 10.3390/molecules24132486.
  • Xiao, S., Y. He, T. Dong, and P. Nie. 2018. Spectral analysis and sensitive waveband determination based on nitrogen detection of different soil types using near infrared sensors. Sensors 18 (2):523. doi: 10.3390/s18020523.
  • Yang, J., J. Bai, M. Liu, Y. Chen, S. Wang, and Q. Yang. 2018. Determination of phosphorus in soil by ICP-OES using an improved standard addition method. Journal of Analytical Methods in Chemistry 2018:1324751. doi: 10.1155/2018/1324751.
  • Yao, X., W. Yang, M. Li, P. Zhou, and Z. Liu. 2019. Prediction of total nitrogen content in different soil types based on spectroscopy. IFAC-Papers OnLine 52 (30):270–6. doi: 10.1016/j.ifacol.2019.12.533.
  • Yokota, M., T. Okada, and I. Yamaguchi. 2007. An optical sensor for analysis of soil nutrients by using LED light sources. Measurement Science and Technology 18 (7):2197–201. doi: 10.1088/0957-0233/18/7/052.
  • Zornoza, R., C. Guerrero, J. Mataix-Solera, K. M. Scow, V. Arcenegui, and J. Mataix-Beneyto. 2008. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils. Soil Biology and Biochemistry 40 (7):1923–30. doi: 10.1016/j.soilbio.2008.04.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.