1,841
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Impact of an antarctic rhizobacterium on root traits and productivity of soybean (Glycine max L.)

, , &
Pages 1818-1825 | Received 13 Aug 2020, Accepted 15 Oct 2020, Published online: 01 Mar 2021

References

  • Acuña-Rodríguez, I. S., H. Hansen, J. Gallardo-Cerda, C. Atala, and M. A. Molina-Montenegro. 2019. Antarctic extremophiles: Biotechnological alternative to crop productivity in saline soils. Frontiers in Bioengineering and Biotechnology 7 (22):1492–1507. doi: 10.3389/fbioe.2019.00022.
  • Ahmad, M., Z. A. Zahir, M. Khalid, F. Nazli, and M. Arshad. 2013. Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer's fields. Plant Physiology and Biochemistry 63:170–6. doi: 10.1016/j.plaphy.2012.11.024.
  • Ahmad, M., L. Pataczek, T. Hilger, Z. Zahir, A. Hussain, F. Rasche, R. Schafleitner, and V. Solberg. 2018. Perspectives of microbial inoculation for sustainable development and environmental management. Frontiers in Microbiology 9:2992. doi: 10.3389/fmicb.2018.02992.
  • Andrade, G., F. De Leij, and J. M. Lynch. 1998. Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on pea. Letters in Applied Microbiology 26 (4):311–6. doi: 10.1046/j.1472-765X.1998.00337.x.
  • Bakker, M., D. Manter, A. Sheflin, T. Weir, and J. Vivanco. 2012. Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil 360 (1-2):1–13. doi: 10.1007/s11104-012-1361-x.
  • Batstone, R. T., E. M. Dutton, D. Wang, M. Yang, and M. E. Frederickson. 2017. The evolution of symbiont preference traits in the model legume Medicago truncatula. The New Phytologist 213 (4):1850–61. doi: 10.1111/nph.14308.
  • Bhardwaj, D., M. Ansari, R. Sahoo, and N. Tuteja. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories 13 (1):66. doi: 10.1186/1475-2859-13-66.
  • Boari, F., G. Cucci, A. Donadio, M. Schiattone, and V. Cantore. 2014. Kaolin influences tomato response to salinity: Physiological aspects. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 64 (7):559–71. doi: 10.1080/09064710.2014.930509.
  • Bourion, V., S. M. H. Rizvi, S. Fournier, H. de Larambergue, F. Galmiche, P. Marget, G. Duc, and J. Burstin. 2010. Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability. Theoretical and Applied Genetics 121 (1):71–86. doi: 10.1007/s00122-010-1292-y.
  • Brisson, V. L., J. E. Schmidt, T. R. Northen, J. P. Vogel, and A. C. M. Gaudin. 2019. Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil. Scientific Reports 9 (1):15611. doi: 10.1038/s41598-019-52148-y.
  • Choudhary, D. K., A. Prakash, V. Wray, and B. N. Johri. 2009. Insights of the fluorescent pseudomonads in plant growth regulation. Current Science 97 (2):170–9.
  • Comas, L., S. Becker, V. M. Cruz, P. F. Byrne, and D. A. Dierig. 2013. Root traits contributing to plant productivity under drought. Frontiers in Plant Science 4:442. doi: 10.3389/fpls.2013.00442.
  • De-la-Peña, C., and V. Loyola-Vargas. 2014. Biotic interactions in the rhizosphere: A diverse cooperative enterprise for plant productivity. Plant Physiology 166 (2):701–19. doi: 10.1104/pp.114.241810.
  • Egamberdieva, D., G. Berg, K. Lindström, and L. A. Räsänen. 2010. Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Galega orientalis Lam.). European Journal of Soil Biology 46 (3-4):269–72. doi: 10.1016/j.ejsobi.2010.01.005.
  • El Zemrany, H., S. Czarnes, P. D. Hallett, S. Alamercery, R. Bally, and L. Jocteur Monrozier. 2007. Early Changes in root characteristics of maize (Zea mays) following seed inoculation with PGPR Azospirillium lipoferum CRT1. Plant and Soil 291 (1-2):109–18. doi: 10.1007/s11104-006-9178-0.
  • Enebe, M. C., and O. O. Babalola. 2018. The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: A survival strategy. Applied Microbiology and Biotechnology 102 (18):7821–35. doi: 10.1007/s00253-018-9214-z.
  • Fardella, C., R. Oses, C. Torres-Díaz, and M. A. Molina-Montenegro. 2014. Antarctic fungal endophytes as tool for the reintroduction of native plant species in arid zones. Bosque 35 (2):235–9. doi: 10.4067/S0717-92002014000200011.
  • Friesen, M. L., S. S. Porter, S. C. Stark, E. J. von Wettberg, J. L. Sachs, and E. Martinez-Romero. 2011. Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics 42:23–46. doi: 10.1146/annurev-ecolsys-102710-145039.
  • García-Fraile, P., E. Menéndez, and R. Rivas. 2015. Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioengineering 2 (3):183–205. doi: 10.3934/bioeng.2015.3.183.
  • Glick, B. R. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012:1–15. doi: 10.6064/2012/963401.
  • Goh, C. H., D. F. Veliz Vallejos, A. B. Nicotra, and U. Mathesius. 2013. The impact of beneficial plant-associated microbes on plant phenotypic plasticity. Journal of Chemical Ecology 39 (7):826–39. doi: 10.1007/s10886-013-0326-8.
  • Gopal, M., and A. Gupta. 2016. Microbiome selection could spur next-generation plant breeding strategies. Frontiers in Microbiology 7:1971. doi: 10.3389/fmicb.2016.01971.
  • Grover, M., S. Z. Ali, V. Sandhya, A. Rasul, and B. Venkateswarlu. 2011. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology 27 (5):1231–40. doi: 10.1007/s11274-010-0572-7.
  • Guo, M., Q. He, Y. Li, X. Lu, and Z. Chen. 2010. Removal of Fe from kaolin using dissimilatory Fe(III)-reducing bacteria. Clays and Clay Minerals 58 (4):515–21. doi: 10.1346/CCMN.2010.0580406.
  • Korir, H., N. W. Mungai, M. Thuita, Y. Hamba, and C. Masso. 2017. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science 8:141. doi: 10.3389/fpls.2017.00141.
  • Li, F., X. Zhang, J. Gong, L. Liu, and Y. Yi. 2018. Specialized core bacteria associate with plants adapted to adverse environment with high calcium contents. PLoS One 13 (3):e0194080. doi: 10.1371/journal.pone.0194080.
  • Lu, T., M. Ke, M. Lavoie, Y. Jin, X. Fan, Z. Zhang, Z. Fu, L. Sun, M. Gillings, J. Penuelas, et al. 2018. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6 (1):231. doi: 10.1186/s40168-018-0615-0.
  • McNickle, G. G., and J. F. Cahill. 2009. Plant root growth and the marginal value theorem. Proceedings of the National Academy of Sciences of the United States of America 106 (12):4747–51. doi: 10.1073/pnas.0807971106.
  • Mohsenipour, M., S. Shahid, K. Ebrahimi, T. Ismail, and X. Wang. 2019. Simulation of nitrate transport and fate in groundwater in presence of kaolin. Journal of Soil and Water Conservation 74 (1):67–76. doi: 10.2489/jswc.74.1.67.
  • Molla, A. H., Z. H. Shamsuddin, M. S. Halimi, M. Morziah, and A. B. Puteh. 2001. Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biology and Biochemistry 33 (4-5):457–63. doi: 10.1016/S0038-0717(00)00186-3.
  • Panke-Buisse, K., A. Poole, J. Goodrich, R. Ley, and J. Kao-Kniffin. 2014. Selection on soil microbiomes reveals reproducible impacts on plant function. The International Society for Microbial Ecology Journal 9:980.
  • Perez-Jaramillo, J. E., R. Mendes, and J. M. Raaijmakers. 2016. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology 90 (6):635–44. doi: 10.1007/s11103-015-0337-7.
  • Philippot, L., J. M. Raaijmakers, P. Lemanceau, and W. H. van der Putten. 2013. Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews. Microbiology 11 (11):789–99. doi: 10.1038/nrmicro3109.
  • Poitout, A., A. Martinière, B. Kucharczyk, N. Queruel, J. Silva-Andia, S. Mashkoor, L. Gamet, F. Varoquaux, N. Paris, H. Sentenac, et al. 2017. Local signalling pathways regulate the Arabidopsis root developmental response to Mesorhizobium loti inoculation. Journal of Experimental Botany 68 (5):1199–211. doi: 10.1093/jxb/erw502.
  • Poole, P. 2017. Shining a light on the dark world of plant root-microbe interactions. Proceedings of the National Academy of Sciences of the United States of America 114 (17):4281–3. doi: 10.1073/pnas.1703800114.
  • Ramadoss, D., V. K. Lakkineni, P. Bose, S. Ali, and K. Annapurna. 2013. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus 2 (1):6. doi: 10.1186/2193-1801-2-6.
  • Rao, I. M., J. W. Miles, S. E. Beebe, and W. J. Horst. 2016. Root adaptations to soils with low fertility and aluminium toxicity. Annals of Botany 118 (4):593–605. doi: 10.1093/aob/mcw073.
  • Sánchez, A. C., R. T. Gutiérrez, R. C. Santana, A. R. Urrutia, M. Fauvart, J. Michiels, and J. Vanderleyden. 2014. Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. European Journal of Soil Biology 62:105–12. doi: 10.1016/j.ejsobi.2014.03.004.
  • Schmidt, J. E., T. M. Bowles, and A. C. M. Gaudin. 2016. Using ancient traits to convert soil health into crop yield: Impact of selection on maize root and rhizosphere function. Frontiers in Plant Science 7:373. doi: 10.3389/fpls.2016.00373.
  • Schmidt, J. E., and A. C. M. Gaudin. 2018. What is the agronomic potential of biofertilizers for maize? A meta-analysis. Federation of European Microbiological Societies Microbial Ecology 94 (7): fiy094. doi: 10.1093/femsec/fiy094.
  • Schmidt, J. E., J. L. Mazza Rodrigues, V. L. Brisson, A. Kent, and A. C. M. Gaudin. 2020. Impacts of directed evolution and soil management legacy on the maize rhizobiome. Soil Biology and Biochemistry 145:107794. doi: 10.1016/j.soilbio.2020.107794.
  • Shrivastava, P., and R. Kumar. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22 (2):123–31. doi: 10.1016/j.sjbs.2014.12.001.
  • Timmusk, S., I. A. Abd El-Daim, L. Copolovici, T. Tanilas, A. Kännaste, L. Behers, E. Nevo, G. Seisenbaeva, E. Stenström, and Ü. Niinemets. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9 (5):e96086. doi: 10.1371/journal.pone.0096086.
  • Vacheron, J., G. Desbrosses, M.-L. Bouffaud, B. Touraine, Y. Moënne-Loccoz, D. Muller, L. Legendre, F. Wisniewski-Dyé, and C. Prigent-Combaret. 2013. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science 4:356. doi: 10.3389/fpls.2013.00356.
  • Wissuwa, M., M. Mazzola, and C. Picard. 2009. Novel approaches in plant breeding for rhizosphere-related traits. Plant and Soil 321 (1-2):409–30. doi: 10.1007/s11104-008-9693-2.
  • Yang, J., J. W. Kloepper, and C.-M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science 14 (1):1–4. doi: 10.1016/j.tplants.2008.10.004.
  • Zhang, X. Y., and W. Wang. 2015. The decomposition of fine and coarse roots: Their global patterns and controlling factors. Scientific Reports 5 (1):9940. doi: 10.1038/srep09940.