438
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Effect of seed priming with silicon on growth, yield and nutrient uptake of maize under water-deficit stress

, , , , & ORCID Icon
Pages 1869-1885 | Received 18 Aug 2020, Accepted 10 Nov 2020, Published online: 13 Feb 2021

References

  • Abdel Latef, A. A., and L. S. P. Tran. 2016. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Frontiers in Plant Science 7:243. doi: 10.3389/fpls.2016.00243.
  • Ahmed, M., U. Qadeer, Z. I. Ahmed, and F. U. Hassan. 2016. Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Archives of Agronomy and Soil Science 62 (3):299–315. doi: 10.1080/03650340.2015.1048235.
  • Alam, A.,. B. Hariyanto, H. Ullah, K. R. Salin, and A. Datta. 2020. Effects of silicon on growth, yield and fruit quality of cantaloupe under drought stress. Silicon doi: 10.1007/s12633-020-00673-1.
  • Amin, M., R. Ahmad, A. Ali, I. Hussain, R. Mahmood, M. Aslam, and D. J. Lee. 2018. Influence of silicon fertilization on maize performance under limited water supply. Silicon 10 (2):177–83. doi: 10.1007/s12633-015-9372-x.
  • Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39 (1):205–7. doi: 10.1007/BF00018060.
  • Biju, S., S. Fuentes, and D. Gupta. 2017. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant Physiol Biochem 119:250–64. doi: 10.1016/j.plaphy.2017.09.001.
  • Bilger, W., and O. Björkman. 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research 25 (3):173–85. doi: 10.1007/BF00033159.
  • Bollero, G. A., D. G. Bullock, and S. E. Hollinger. 1996. Soil temperature and planting date effects on corn yield, leaf area, and plant development. Agronomy Journal 88 (3):385–90. doi: 10.2134/agronj1996.00021962008800030005x.
  • Chen, D., S. Wang, L. Yin, and X. Deng. 2018. How does silicon mediate plant water uptake and loss under water deficiency? Frontiers in Plant Science 9:281. doi: 10.3389/fpls.2018.00281.
  • Chen, W., X. Yao, K. Cai, and J. Chen. 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research 142 (1):67–76. doi: 10.1007/s12011-010-8742-x.
  • Cuong, T. X., H. Ullah, A. Datta, and T. C. Hanh. 2017. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Science 24 (5):283–90. doi: 10.1016/j.rsci.2017.06.002.
  • Datta, A., B. M. Sindel, P. Kristiansen, R. S. Jessop, and W. L. Felton. 2009. The effects of temperature and soil moisture on chickpea (Cicer arietinum L.) genotype sensitivity to isoxaflutole. Journal of Agronomy and Crop Science 195 (3):178–85. doi: 10.1111/j.1439-037X.2009.00362.x.
  • Datta, A., H. Ullah, and Z. Ferdous. 2017. Water management in rice. In Rice production worldwide, ed. B. S. Chauhan, K. Jabran, and G. Mahajan, 255–77. Cham: Springer. doi: 10.1007/978-3-319-47516-5_11.
  • Delavar, K., F. Ghanati, H. Zare-Maivan, and M. Behmanesh. 2017. Effects of silicon on the growth of maize seedlings under normal, aluminum, and salinity stress conditions. Journal of Plant Nutrition 40 (10):1475–84. doi: 10.1080/01904167.2016.1269344.
  • Demmig-Adams, B., and W. W. Adams. 1996. Xanthophyll cycle and light stress in nature: Uniform response to excess direct sunlight among higher plant species. Planta 198 (3):460–70. doi: 10.1007/BF00620064.
  • Etesami, H., and B. R. Jeong. 2018. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety 147:881–96. doi: 10.1016/j.ecoenv.2017.09.063.
  • Farooq, M. A., and K. J. Dietz. 2015. Silicon as versatile player in plant and human biology: Overlooked and poorly understood. Frontiers in Plant Science 6:994. doi: 10.3389/fpls.2015.00994.
  • Farooq, M., M. Hussain, A. Wahid, and K. H. M. Siddique. 2012. Drought stress in plants: An overview. In Plant responses to drought stress, 1–33. Berlin, Heidelberg: Springer.
  • Fu, J., and B. Huang. 2001. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environmental and Experimental Botany 45 (2):105–14. doi: 10.1016/S0098-8472(00)00084-8.
  • Gao, X., C. Zou, L. Wang, and F. Zhang. 2005. Silicon improves water use efficiency in maize plants. Journal of Plant Nutrition 27 (8):1457–70. doi: 10.1081/PLN-200025865.
  • Gao, X., C. Zou, L. Wang, and F. Zhang. 2006. Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition 29 (9):1637–47. doi: 10.1080/01904160600851494.
  • Gong, H. J., K. M. Chen, G. C. Chen, S. M. Wang, and C. L. Zhang. 2003. Effects of silicon on growth of wheat under drought. Journal of Plant Nutrition 26 (5):1055–63. doi: 10.1081/PLN-120020075.
  • Guidi, L., E. Lo Piccolo, and M. Landi. 2019. Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C3 or C4 species? Frontiers in Plant Science 10:174. doi: 10.3389/fpls.2019.00174.
  • Habibi, G., and R. Hajiboland. 2013. Alleviation of drought stress by silicon supplementation in pistachio (Pistacia vera L.) plants. Folia Horticulturae 25 (1):21–9. doi: 10.2478/fhort-2013-0003.
  • Hasanuzzaman, M., K. Nahar, T. I. Anee, M. I. R. Khan, and M. Fujita. 2018. Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. South African Journal of Botany 115:50–7. doi: 10.1016/j.sajb.2017.12.006.
  • Hattori, T., S. Inanaga, H. Araki, P. An, S. Morita, M. Luxová, and A. Lux. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum 123 (4):459–66. doi: 10.1111/j.1399-3054.2005.00481.x.
  • Haynes, R. J. 2017. Significance and role of Si in crop production. Advances in Agronomy 146:83–166.
  • He, M., and F. A. Dijkstra. 2014. Drought effect on plant nitrogen and phosphorus: A meta‐analysis. New Phytologist 204 (4):924–31. doi: 10.1111/nph.12952.
  • Hessini, K., J. P. Martínez, M. Gandour, A. Albouchi, A. Soltani, and C. Abdelly. 2009. Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora. Environmental and Experimental Botany 67 (2):312–9. doi: 10.1016/j.envexpbot.2009.06.010.
  • Imran, M., A. Mahmood, V. Romheld, and G. Neumann. 2013. Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. European Journal of Agronomy 49:141–8. doi: 10.1016/j.eja.2013.04.001.
  • Jackson, M. L. 1965. Soil chemical analysis-advanced course: second printing. Madison: Department of Soils, University of Wisconsin.
  • Johnson, C. M., and A. Ulrich. 1959. Analytical methods for use in plant analysis. California Agricultural Experiment Station Bulletin 766:25–78.
  • Kastori, R., M. Plesnicar, I. Arsenijevic‐Maksimovic, N. Petrovic, D. Pankovic, and Z. Sakac. 2000. Photosynthesis, chlorophyll fluorescence, and water relations in young sugar beet plants as affected by sulfur supply. Journal of Plant Nutrition 23 (8):1037–49. doi: 10.1080/01904160009382080.
  • Kaya, C., L. Tuna, and D. Higgs. 2006. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. Journal of Plant Nutrition 29 (8):1469–80. doi: 10.1080/01904160600837238.
  • Kilmer, V. J. 1965. Silicon. In Methods of soil analysis, Part 2. Chemical and microbiological properties, ed. C. A. Black, 959–962. Madison, WI: Agron. Ser. No. 9, American Society of Agronomy. Chapter 64.
  • Krall, J. P., and G. E. Edwards. 1992. Relationship between photosystem II activity and CO2 fixation in leaves. Physiologia Plantarum 86 (1):180–7. doi: 10.1111/j.1399-3054.1992.tb01328.x.
  • Kraus, T. E., B. D. McKersie, and R. A. Fletcher. 1995. Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. Journal of Plant Physiology 145 (4):570–6. doi: 10.1016/S0176-1617(11)81790-6.
  • Liang, Y., M. Nikolic, R. Bélanger, H. Gong, and A. Song. 2015. Silicon in agriculture: From theory to practice. Dordrecht: Springer.
  • Lu, Q., and C. Lu. 2004. Photosynthetic pigment composition and photosystem II photochemistry of wheat ears. Plant Physiology and Biochemistry 42 (5):395–402. doi: 10.1016/j.plaphy.2004.02.008.
  • Lutts, S., P. Benincasa, L. Wojtyla, S. Kubala, R. Pace, K. Lechowska, and M. Garnczarska. 2016. Seed priming: New comprehensive approaches for an old empirical technique. In New challenges in seed biology-basic and translational research driving seed technology, ed. S.Araujo and A. Balestrazzi, 1–49. IntechOpen. doi: 10.5772/64420.
  • Ma, J. F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50 (1):11–8. doi: 10.1080/00380768.2004.10408447.
  • Maghsoudi, K., Y. Emam, and M. Ashraf. 2015. Influence of foliar application of silicon on chlorophyll fluorescence, photosynthetic pigments, and growth in water-stressed wheat cultivars differing in drought tolerance. Turkish Journal of Botany 39:625–34. doi: 10.3906/bot-1407-11.
  • Maghsoudi, K., Y. Emam, and M. Pessarakli. 2016. Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. Journal of Plant Nutrition 39 (7):1001–15. doi: 10.1080/01904167.2015.1109108.
  • Mali, M., and N. C. Aery. 2008. Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. Journal of Plant Nutrition 31 (11):1867–76. doi: 10.1080/01904160802402666.
  • Mauad, M.,. C. A. C. Crusciol, A. S. Nascente, H. G. Filho, and G. P. P. Lima. 2016. Effects of silicon and drought stress on biochemical characteristics of leaves of upland rice cultivars. Revista Ciência Agronômica 47 (3):532–9. doi: 10.5935/1806-6690.20160064.
  • McKee, G. W. 1964. A coefficient for computing leaf area in hybrid corn. Agronomy Journal 56 (2):240–1. doi: 10.2134/agronj1964.00021962005600020038x.
  • Meharg, C., and A. A. Meharg. 2015. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environmental and Experimental Botany 120:8–17. doi: 10.1016/j.envexpbot.2015.07.001.
  • Murphy, J., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31–6. doi: 10.1016/S0003-2670(00)88444-5.
  • Ouzounidou, G., A. Giannakoula, I. Ilias, and P. Zamanidis. 2016. Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Brazilian Journal of Botany 39 (2):531–9. doi: 10.1007/s40415-016-0274-y.
  • Pei, Z. F., D. F. Ming, D. Liu, G. L. Wan, X. X. Geng, H. J. Gong, and W. J. Zhou. 2010. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation 29 (1):106–15. doi: 10.1007/s00344-009-9120-9.
  • Reddy, A. R., K. V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 161 (11):1189–202. doi: 10.1016/j.jplph.2004.01.013.
  • Romero-Aranda, M. R., O. Jurado, and J. Cuartero. 2006. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology 163 (8):847–55. doi: 10.1016/j.jplph.2005.05.010.
  • Sacała, E. 2017. The influence of increasing doses of silicon on maize seedlings grown under salt stress. Journal of Plant Nutrition 40 (6):819–27. doi: 10.1080/01904167.2016.1236948.
  • Schonfeld, M. A., R. C. Johnson, B. F. Carver, and D. W. Mornhinweg. 1988. Water relations in winter wheat as drought resistance indicators. Crop Science 28 (3):526–31. doi: 10.2135/cropsci1988.0011183X002800030021x.
  • Shangguan, Z., M. Shao, and J. Dyckmans. 2000. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. Journal of Plant Physiology 156 (1):46–51. doi: 10.1016/S0176-1617(00)80271-0.
  • Sharma, P., A. B. Jha, R. S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:1–26. doi: 10.1155/2012/217037.
  • Shen, X., Y. Zhou, L. Duan, Z. Li, A. E. Eneji, and J. Li. 2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology 167 (15):1248–52. doi: 10.1016/j.jplph.2010.04.011.
  • Singh, M., J. Kumar, S. Singh, V. P. Singh, and S. M. Prasad. 2015. Roles of osmoprotectants in improving salinity and drought tolerance in plants: A review. Reviews in Environmental Science and Bio/Technology 14 (3):407–26. doi: 10.1007/s11157-015-9372-8.
  • Sirisuntornlak, N., S. Ghafoori, A. Datta, and W. Arirob. 2019. Seed priming and soil incorporation with silicon influence growth and yield of maize under water-deficit stress. Archives of Agronomy and Soil Science 65 (2):197–207. doi: 10.1080/03650340.2018.1492713.
  • Sirisuntornlak, N., H. Ullah, W. Sonjaroon, S. Anusontpornperm, W. Arirob, and A. Datta. 2020. Interactive effects of silicon and soil pH on growth, yield and nutrient uptake of maize. Silicon doi: 10.1007/s12633-020-00427-z.
  • Tadayyon, A., P. Nikneshan, and M. Pessarakli. 2018. Effects of drought stress on concentration of macro-and micro-nutrients in castor (Ricinus communis L.) plant. Journal of Plant Nutrition 41 (3):304–10. doi: 10.1080/01904167.2017.1381126.
  • Turakainen, M., H. Hartikainen, and M. M. Seppänen. 2004. Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. Journal of Agricultural and Food Chemistry 52 (17):5378–82. doi: 10.1021/jf040077x.
  • Ullah, H., and A. Datta. 2018. Root system response of selected lowland Thai rice varieties as affected by cultivation method and potassium rate under alternate wetting and drying irrigation. Archives of Agronomy and Soil Science 64 (14):2045–59. doi: 10.1080/03650340.2018.1476756.
  • Ullah, H., A. Datta, S. Shrestha, and S. Ud Din. 2017. The effects of cultivation methods and water regimes on root systems of drought-tolerant (RD6) and drought-sensitive (RD10) rice varieties of Thailand. Archives of Agronomy and Soil Science 63 (9):1198–209. doi: 10.1080/03650340.2016.1266077.
  • Ullah, H., P. D. Luc, A. Gautam, and A. Datta. 2018a. Growth yield and silicon uptake of rice (Oryza sativa) as influenced by dose and timing of silicon application under water-deficit stress. Archives of Agronomy and Soil Science 64 (3):318–30. doi: 10.1080/03650340.2017.1350782.
  • Ullah, H., A. Mohammadi, and A. Datta. 2018b. Growth yield and water productivity of selected lowland Thai rice varieties under different cultivation methods and alternate wetting and drying irrigation. Annals of Applied Biology 173 (3):302–12. doi: 10.1111/aab.12463.
  • Ullah, H., R. Santiago-Arenas, Z. Ferdous, A. Attia, and A. Datta. 2019. Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Advances in Agronomy 156:109–57.
  • van Kooten, O., and J. F. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25 (3):147–50. doi: 10.1007/BF00033156.
  • Westerman, R. L. 1991. Soil testing and plant analysis. 3rd ed. Madison, WI: Soil Science Society of America.
  • Xie, Z., R. Song, H. Shao, F. Song, H. Xu, and Y. Lu. 2015. Silicon improves maize photosynthesis in saline-alkaline soils. The Scientific World Journal 2015:245072. doi: 10.1155/2015/245072.
  • Yemm, E. W., and A. J. Willis. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57 (3):508–14. doi: 10.1042/bj0570508.
  • Yin, L., S. Wang, P. Liu, W. Wang, D. Cao, X. Deng, and S. Zhang. 2014. Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiology and Biochemistry : PPB 80:268–77. doi: 10.1016/j.plaphy.2014.04.014.
  • Zhu, X., H. Gong, G. Chen, S. Wang, and C. Zhang. 2005. Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. Journal of Arid Environments 62 (1):1–14. doi: 10.1016/j.jaridenv.2004.10.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.