318
Views
5
CrossRef citations to date
0
Altmetric
Review

Chitosan nanofertilizer boost source activity in plant

ORCID Icon &
Pages 2486-2499 | Received 24 Jul 2020, Accepted 16 Aug 2020, Published online: 18 Jun 2021

References

  • Adrees, M., S. Ali, M. Rizwan, M. Ibrahim, F. Abbas, M. Farid, M. Zia-Ur-Rehman, M. K. Irshad, and S. A. Bharwana. 2015. The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research 22 (11):8148–62. doi: 10.1007/s11356-015-4496-5.
  • Ainsworth, E. A., and D. R. Bush. 2011. Carbohydrate export from the leaf: A highly regulated process and target to enhance photosynthesis and productivity. Plant Physiology 155 (1):64–9. doi: 10.1104/pp.110.167684.
  • Ali, W., S. Rajendran, and M. Joshi. 2011. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers 83 (2):438–46. doi: 10.1016/j.carbpol.2010.08.004.
  • Allen, R. D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiology 107 (4):1049–54. doi: 10.1104/pp.107.4.1049.
  • Alscher, R. G., J. L. Donahue, and C. L. Cramer. 1997. Reactive oxygen species and antioxidants: Relationships in green cells. Physiologia Plantarum 100 (2):224–33. doi: 10.1111/j.1399-3054.1997.tb04778.x.
  • Anjali, C. H., Y. Sharma, A. Mukherjee, and N. Chandrasekaran. 2012. Neem oil (Azadirachtaindica) nanoemulsion-a potent larvicidal agent against Culexquinquefasciatus. Pest Management Science 68 (2):158–63. doi: 10.1002/ps.2233.
  • Anusuya, S., and K. N. Banu. 2016. Silver-chitosan nanoparticles induced biochemical variations of chickpea (Cicerarietinum L.). Biocatalysis and Agricultural Biotechnology 8:39–44. doi: 10.1016/j.bcab.2016.08.005.
  • Bihmidine, S., C. T. Hunter, C. E. Johns, K. E. Koch, and D. M. Braun. 2013. Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength. Frontiers in Plant Science 4 (177):1–15. doi: 10.3389/fpls.2013.00177.
  • Bodirsky, B. L., S. Rolinski, A. Biewald, I. Weindl, A. Popp, and H. Lotze-Campen. 2015. Global food demand scenarios for the 21st century. PLOS One 10 (11):e0139201. doi: 10.1371/journal.pone.0139201.
  • Bolwell, G. P., and P. Wojtaszek. 1997. Mechanisms for the generation of reactive oxygen species in plant defence-a broad perspective. Physiological and Molecular Plant Pathology 51 (6):347–66. doi: 10.1006/pmpp.1997.0129.
  • Broadley, M. R., P. J. White, J. P. Hammond, I. Zelko, and A. Lux. 2007. Zinc in plants. New Phytologist 173 (4):677–702. doi: 10.1111/j.1469-8137.2007.01996.x.
  • Bruce, R. J., and C. A. West. 1989. Elicitation of lignin biosynthesis and is peroxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiology 91 (3):889–97. doi: 10.1104/pp.91.3.889.
  • Brunel, F., N. E. El Gueddari, and B. M. Moerschbacher. 2013. Complexation of copper (II) with chitosan nanogels: Toward control of microbial growth. Carbohydrate Polymers 92 (2):1348–56. doi: 10.1016/j.carbpol.2012.10.025.
  • Cakmak, I., and H. Marschner. 1988. Enhanced superoxide radical production in roots of zinc deficient plants. Journal of Experimental Botany 39 (10):1449–60. doi: 10.1093/jxb/39.10.1449.
  • Chandra, S., N. Chakraborty, A. Dasgupta, J. Sarkar, K. Panda, and K. Acharya. 2015. Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Scientific Reports 5 (1):1–13. doi: 10.1038/srep15195.
  • Chang, T.-G., and X. G. Zhu. 2017. Source–sink interaction: A century old concept under the light of modern molecular systems biology. Journal of Experimental Botany 68 (16):4417–31. doi: 10.1093/jxb/erx002.
  • Choudhary, R. C., R. V. Kumaraswamy, S. Kumari, S. S. Sharma, A. Pal, R. Raliya, P. Biswas, and V. Saharan. 2019. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules 127:126–35. doi: 10.1016/j.ijbiomac.2018.12.274.
  • Choudhary, R. C., R. V. Kumaraswamy, S. Kumari, S. S. Sharma, A. Pal, R. Raliya, P. Biswas, and V. Saharan. 2017. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific Reports 7 (1):9754. doi: 10.1038/s41598-017-08571-0.
  • Corradini, E., M. R. de Moura, and L. H. C. Mattoso. 2010. A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polymer Letters 4 (8):509–15. doi: 10.3144/expresspolymlett.2010.64.
  • Das, P., K. K. Nutan, S. L. S. Pareek, and A. Pareek. 2015. Oxidative environment and redoxhomeostasis in plants: Dissecting out significant contribution of major cellular organelles. Frontiers in Environmental Science 2:1–11. doi: 10.3389/fenvs.2014.00070.
  • Deshpande, P., A. Dapkekar, M. D. Oak, K. M. Paknikar, and J. M. Rajwade. 2017. Zinc complexed chitosan/TPP nanoparticles: A promising micronutrient nanocarrier suited for foliar application. Carbohydrate Polymers 165:394–401. doi: 10.1016/j.carbpol.2017.02.061.
  • Dimkpa, C. O., and P. S. Bindraban. 2018. Correction to Nanofertilizers: New products for the industry? Journal of Agricultural and Food Chemistry 66 (26):6462–73. doi: 10.1021/acs.jafc.7b02150.
  • Dong, S., and D. M. Beckles. 2019. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. Journal of Plant Physiology 234-235:80–93. doi: 10.1016/j.jplph.2019.01.007.
  • Doostdar, H. 2003. Stabilized concentrated formulations for enhancing plant defensive responses. U.S. Patent No. 6,649,566.
  • Du, W.-L., S.-S. Niu, Y.-L. Xu, Z.-R. Xu, and C.-L. Fan. 2009. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers 75 (3):385–9. doi: 10.1016/j.carbpol.2008.07.039.
  • Feizi, H., P. R. Moghaddam, N. Shahtahmassebi, and A. Fotovat. 2012. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research 146 (1):101–6. doi: 10.1007/s12011-011-9222-7.
  • Feyzioglu, G. C., and F. Tornuk. 2016. Development of chitosan nanoparticles loaded with summer savory (Saturejahortensis L.) essential oil for antimicrobial and antioxidant delivery applications. Lwt - Lwt 70:104–10. doi: 10.1016/j.lwt.2016.02.037.
  • Foyer, C. H. 1988. Feedback inhibition of photosynthesis through source-sink regulation in leaves. Plant Physiology and Biochemistry 26 (4):483–92.
  • Gogos, A., K. Knauer, and T. D. Bucheli. 2012. Nanomaterials in plant protection and fertilization: Current state, foreseen applications and research priorities. Journal of Agricultural and Food Chemistry 60 (39):9781–92. −doi: 10.1021/jf302154y.
  • Gross, G. C., C. Janse, and E. F. Elstner. 1977. Involvement of malate, monophenols, and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (ArmoracialapathifoliaGilib). Planta 136 (3):271–6. doi: 10.1007/BF00385995.
  • Hadwiger, L. A., S. J. Klosterman, and J. J. Choi. 2002. The mode of action of chitosan and its oligomers in inducing plant promoters and developing disease resistance in plants. In Advances in chitin science, ed. K. Suchiva, S. Chandrkrachang, P. Methacanon, and M. G. Peter, 452–7. Bangkok: MTEC.
  • Hedhly, A., H. Vogler, M. W. Schmid, D. Pazmino, V. Gagliardini, D. Santelia, and U. Grossniklaus. 2016. Starchturnover and metabolism during flower and early embryo development. Plant Physiology 172 (4):2388–402. doi: 10.1104/pp.16.00916.
  • Herold, A. 1980. Regulation of photosynthesis by sink activity-The missing link. New Phytologist 86 (2):131–44. doi: 10.1111/j.1469-8137.1980.tb03184.x.
  • Iglesias, D. J., I. Lliso, F. R. Tadeo, and M. Talon. 2002. Regulation of photosynthesis through source: Sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiologia Plantarum 116 (4):563–72. doi: 10.1034/j.1399-3054.2002.1160416.x.
  • Katiyar, D., A. Hemantaranjan, and B. Singh. 2015. Chitosan as a promising natural compound to enhance potential physiological responses in plant: A review. Indian Journal of Plant Physiology 20 (1):1–9. doi: 10.1007/s40502-015-0139-6.
  • Khan, M. I. R., M. Fatma, T. S. Per, N. A. Anjum, and N. A. Khan. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science 6:462. doi: 10.3389/fpls.2015.00462.
  • Kheiri, A., S. A. M. Jorf, A. Malihipour, H. Saremi, and M. Nikkhah. 2016. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusariumgraminearum) in-vitro and green house. International Journal of Biological Macromolecules 93:1261–72. doi: 10.1016/j.ijbiomac.2016.09.072.
  • Kirschbaum, M. U. F. 2011. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiology 155 (1):117–24. doi: 10.1104/pp.110.166819.
  • Koch, K. E. 1996. Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47 (1):509–40. doi: 10.1146/annurev.arplant.47.1.509.
  • Kuang, A., and M. E. Musgrave. 1996. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana. Protoplasma 194 (1–2):81–90. doi: 10.1007/BF01273170.
  • Kumaraswamy, R. V., S. Kumari, R. C. Choudhary, S. S. Sharma, A. Pal, R. Raliya, P. Biswas, and V. Saharan. 2019. Salicylic acid functionalized chitosan nanoparticle: A sustainable bio stimulant for plant. International Journal of Biological Macromolecules 123:59–69. doi: 10.1016/j.ijbiomac.2018.10.202.
  • Kumari, S., R. V. Kumaraswamy, R. C. Choudhary, S. S. Sharma, A. Pal, R. Raliya, P. Biswas, and V. Saharan. 2018. Thymolnanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Scientific Reports 8 (1):1–12. doi: 10.1038/s41598-018-24871-5.
  • Liang, W., A. Yu, G. Wang, F. Zheng, P. Hu, J. Jia, and H. Xu. 2018. A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L) growth. Carbohydrate Polymers 199:437–44. doi: 10.1016/j.carbpol.2018.07.042.
  • MacNeill, G. J., S. Mehrpouyan, M. A. Minow, J. A. Patterson, I. J. Tetlow, and M. J. Emes. 2017. Starch as a source, starch as a sink: The bifunctional role of starch in carbon allocation. Journal of Experimental Botany 106 (25):10348–53. doi: 10.1093/jxb/erx291.
  • Manikandan, A., and M. Sathiyabama. 2016. Preparation of chitosan nanoparticles and its effect on detached rice leaves infected withPyriculariagrisea. International Journal of Biological Macromolecules 84:58–61. doi: 10.1016/j.ijbiomac.2015.11.083.
  • Manukumar, H. M., S. Umesha, and H. N. N. Naveen Kumar. 2017. Promising biocidal activity of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) as anti-infective agents against perilous pathogens. International Journal of Biological Macromolecules 102:1257–65. doi: 10.1016/j.ijbiomac.2017.05.030.
  • Martin, C., and A. M. Smith. 1995. Starch biosynthesis. The Plant Cell 7 (7):971–85. doi: 10.1105/tpc.7.7.971.
  • McCormick, A. J., M. D. Cramer, and D. A. Watt. 2006. Sink strength regulates photosynthesis in sugarcane. New Phytologist 171 (4):759–70. doi: 10.1111/j.1469-8137.2006.01785.x.
  • McMurray, T. A., P. S. M. Dunlop, and J. A. Byrne. 2006. The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. Journal of Photochemistry and Photobiology A: Chemistry 182 (1):43–51. doi: 10.1016/j.jphotochem.2006.01.010.
  • Mehdy, M. C., Y. K. Sharma, K. Sathasivan, and N. W. Bays. 2008. The role of activated oxygen species in plant disease resistance. Physiologia Plantarum 98 (2):365–74. doi: 10.1034/j.1399-3054.1996.980219.x.
  • Milani, N., M. J. McLaughlin, S. P. Stacey, J. K. Kirby, G. M. Hettiarachchi, D. G. Beak, and G. Cornelis. 2012. Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil. Journal of Agricultural and Food Chemistry 60 (16):3991–8. doi: 10.1021/jf205191y.
  • Muller, B., F. Pantin, M. Genard, O. Turc, S. Freixes, M. Piques, and Y. Gibon. 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany 62 (6):1715–29. doi: 10.1093/jxb/erq438.
  • Nekrasova, G. F., O. S. Ushakova, A. E. Ermakov, M. A. Uimin, and I. V. Byzov. 2011. Effects of Copper (II) ions and copper oxide nanoparticles on Elodea densa Planch. Russian Journal of Ecology 42 (6):458–63. doi: 10.1134/S1067413611060117.
  • Oliveira, H. C., B. C. R. Gomes, M. T. Pelegrino, and A. B. Seabra. 2016. Nitric oxide- releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 61:10–9. doi: 10.1016/j.niox.2016.09.010.
  • O'Neill, B. C., M. Dalton, R. Fuchs, L. Jiang, S. Pachauri, and K. Zigova. 2010. Global demographic trends and future carbon emissions. Proceedings of the National Academy of Sciences 107 (41):17521–6. doi: 10.1073/pnas.1004581107.
  • Parisi, C., M. Vigani, and E. R. Cerezo. 2015. Agricultural Nanotechnologies: What are the current possibilities? Nano Today. 10 (2):124–7. doi: 10.1016/j.nantod.2014.09.009.
  • Pereira, A. E. S., P. M. Silva, J. L. Oliveira, H. C. Oliveira, and L. F. Fraceto. 2017. Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids and Surfaces B: Biointerfaces 150:141–52. doi: 10.1016/j.colsurfb.2016.11.027.
  • Pichyangkura, R., and S. Chadchawan. 2015. Bio stimulant activity of chitosan in horticulture. Scientia Horticulturae 196:49–65. doi: 10.1016/j.scienta.2015.09.031.
  • Piras, A. M., G. Maisetta, S. Sandreschi, S. Esin, M. Gazzarri, G. Batoni, and F. Chiellini. 2014. Preparation, physical-chemical and biological characterization of chitosan nanoparticles loaded with lysozyme. International Journal of Biological Macromolecules 67:124–31. doi: 10.1016/j.ijbiomac.2014.03.016.
  • Qi, L., Z. Xu, X. Jiang, C. Hu, and X. Zou. 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research 339 (16):2693–700. doi: . doi: 10.1016/j.carres.2004.09.007.
  • Raliya, R., V. Saharan, C. Dimkpa, and P. Biswas. 2018. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of Agricultural and Food Chemistry 66 (26):6487–503. pp doi: 10.1021/acs.jafc.7b02178.
  • Ramakrishna, A., and G. A. Ravishankar. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6 (11):1720–31. doi: 10.4161/psb.6.11.17613.
  • Rivas-San Vicente, M., and J. Plasencia. 2011. Salicylic acid beyond defense: Its role in plant growth and development. Journal of Experimental Botany 62 (10):3321–38. doi: 10.1093/jxb/err031.
  • Rolland, F., E. B. Gonzalez, and J. Sheen. 2006. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology 57 (1):675–709. doi: 10.1146/annurev.arplant.57.032905.105441.
  • Saharan, V., R. V. Kumaraswamy, R. C. Choudhary, S. Kumari, A. Pal, P. Raliya, and P. Biswas. 2016. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal of Agricultural and Food Chemistry 64 (31):6148–55. doi: 10.1021/acs.jafc.6b02239.
  • Saharan, V., A. Mehrotra, R. Khatik, P. Rawal, S. S. Sharma, and A. Pal. 2013. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules 62:677–83. doi: 10.1016/j.ijbiomac.2013.10.012.
  • Saharan, V., G. Sharma, M. Yadav, M. K. Choudhary, S. S. Sharma, A. Pal, R. Raliya, and P. Biswas. 2015. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules 75:346–53. doi: 10.1016/j.ijbiomac.2015.01.027.
  • Saharan, V., R. Khatik, M. Kumari, R. Raliya, I. Nallamuthu, and A. Pal. 2014. Nano-materials for plant protection with special reference to nano-chitosan. In Proceedings of the 4th Annual International Conference on Advances in Biotechnology (BioTech 2014), Dubai, United Arab Emirates, March 10 − 11, 23.
  • Sathiyabama, M., and R. E. Charles. 2015. Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusariumoxysporumf. sp. lycopersici. Carbohydrate Polymers 133:400–7. doi: 10.1016/j.carbpol.2015.07.066.
  • Sathiyabama, M., and R. Parthasarathy. 2016. Biological preparation of chitosan nanoparticles and it’s in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydrate Polymers 151:321–5. doi: 10.1016/j.carbpol.2016.05.033.
  • Sharma, S. 2017. Enhanced antibacterial efficacy of silver nanoparticles immobilized in a chitosan nanocarrier. International Journal of Biological Macromolecules 104:1740–5. doi: 10.1016/j.ijbiomac.2017.07.043.
  • Sharma, G., A. Kumar, K. A. Devi, D. Prajapati, D. Bhagat, A. Pal, R. Raliya, P. Biswas, and V. Saharan. 2020. Chitosan nanofertilizer to foster source activity in maize. International Journal of Biological Macromolecules 145:226–34. doi: 10.1016/j.ijbiomac.2019.12.155.
  • Sheu, J.-J., S.-P. Jan, H.-T. Lee, and S.-M. Yu. 1994. Control of transcription and mRNA turnover as mechanisms of metabolic repression of alpha-amylase gene expression. The Plant Journal 5 (5):655–64. doi: 10.1111/j.1365-313X.1994.00655.x.
  • Shukla, S. K., A. K. Mishra, O. A. Arotiba, and B. B. Mamba. 2013. Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules 59:46–58. doi: 10.1016/j.ijbiomac.2013.04.043.
  • Smith, A. M. 1999. Making starch. Current Opinion in Plant Biology 2 (3):223–9. doi: 10.1016/S1369-5266(99)80039-9.
  • Smith, A. M., and C. Martin. 1993. Starch biosynthesis and the potential for its manipulation. In Biosynthesis and manipulation of plant products, ed. D. Grierson, 1–54. Glasgow, Scotland: Blackie.
  • Tang, L. Y., N. Nagata, R. Matsushima, Y. L. Chen, Y. Yoshioka, and W. Sakamoto. 2009. Visualization of Plastids in pollen grains: Involvement of FtsZ1in pollen plastid division. Plant and Cell Physiology 50 (4):904–8. doi: 10.1093/pcp/pcp042.
  • Torney, F., B. G. Trewyn, V. S. Y. Lin, and K. Wang. 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology 2 (5):295–300. doi: 10.1038/nnano.2007.108.
  • Vamvakaki, V., and N. A. Chaniotakis. 2007. Pesticide detection with a liposome-based nano- biosensor. Biosensors and Bioelectronics 22 (12):2848–53. doi: 10.1016/j.bios.2006.11.024.
  • Van, S. N., H. D. Minh, and D. N. Anh. 2013. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatalysts and Agricultural Biotechnology 2 (4):289–94. doi: 10.1016/j.bcab.2013.06.001.
  • Vlot, A. C., D. M. A. Dempsey, and D. F. Klessig. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology 47 (1):177–206. doi: 10.1146/annurev.phyto.050908.135202.
  • Welch, R. M., and R. D. Graham. 2004. Breeding for micronutrient in staple food crops from a human nutrition perspective. Journal of Experimental Botany 55 (396):353–64. doi: 10.1093/jxb/erh064.
  • Yang, L. Y., L. T. Wang, J. H. Ma, E. D. Ma, J. Y. Li, and M. Gong. 2017. Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco (NicotianatabacumL.) Plants. Photosynthetica 55 (3):467–77. doi: 10.1007/s11099-016-0668-x.
  • Yu, S. M. 1999. Cellular and genetic responses of plants to sugar starvation. Plant Physiology 121 (3):687–93. doi: 10.1104/pp.121.3.687.
  • Yu, S.-M., S.-F. Lo, and T.-H. David. 2015. Source–sink communication: Regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science 20 (12):844–57. doi: 10.1016/j.tplants.2015.10.009.
  • Zandalinas, S. I., and R. Mittler. 2018. ROS-induced ROS release in plant and animal cells. Free Radical Biology and Medicine 122:21–7. doi: 10.1016/j.freeradbiomed.2017.11.028.
  • Zhang, H., C. Lian, and Z. Shen. 2009. Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Annals of Botany 103 (6):923–30. doi: 10.1093/aob/mcp012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.