94
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Indigenous organic resources utilization, application methods and sowing time replenish soil nitrogen and increase maize yield and total dry biomass

ORCID Icon, &
Pages 2859-2876 | Received 07 May 2021, Accepted 03 Nov 2021, Published online: 27 Apr 2022

References

  • Abdel-Ghani, A. H., B. Kumar, J. Pace, C. Jansen, P. J. Gonzalez-Portilla, J. Reyes-Matamoros, J. P. San Martin, M. Lee, and T. Lübberstedt. 2015. Association analysis of genes involved in maize (Zea mays L.) root development with seedling and agronomic traits under contrasting nitrogen levels. Plant Molecular Biology 88 (1–2):133–47. doi: 10.1007/s11103-015-0314-1.
  • Aise, D., S. Erdal, A. Hasanand, and M. Ahment. 2011. Effects of different water, phosphorus and magnesium doses on the quality and yield factors of soybean in Harran plain conditions. International Journal of Physical Sciences 6:1484–95.
  • Akpalu, M. M., H. Siewobr, D. Oppong, and S. E. Akpalu. 2014. Phosphorus application and rhizobia inoculation on growth and yield of soybean (Glycine max L. Merrill). American Journal of Experimental Agriculture 4 (6):674–85. doi: 10.9734/AJEA/2014/7110.
  • Akter, F., I. Nurul, A. T. M. Shamsuddoha, M. S. I. Bhuiyan, and S. Shilpi. 2013. Effect of phosphorus and sulphur on growth and yield of soybean (Glycine max L.). International Journal of Bio-resource and Stress Management 4:555–60.
  • Al-Juthery, H. W., K. H. Habeeb, F. J. K. Altaee, D. K. Al-Taey, and A. R. M. Al-Tawaha. 2018. Effect of foliar application of different sources of nano-fertilizers on growth and yield of wheat. Bioscience Research 15 (4):3976–85. ‏
  • Al Tawaha, A. R., P. E. M. Wahab, H. B. Jaafar, A. T. K. Zuan, M. Z. Hassan, and A. R. M. Al-Tawaha. 2021. Yield and nutrients leaf content of butterhead lettuce (Lactuca sativa) in response to fish nutrient solution in a small scale of aquaponic systems. Ecological Engineering & Environmental Technology 22 (6):85–94. doi: 10.12912/27197050/141524.
  • Al-Tawaha, A. R. M., A. Imran, A. Al-Tawaha, S. Khalid, A. Rauf, D. Thangadurai, J. Sangeetha, S. Khanum, S. Ghanem, A, and Sharf-Eldin, A. 2020. Adapting crop management practices to climate change. Advances in Environmental Biology 14:10–18.
  • Amanullah, S. K., Imran, H. A. Khan, A. R. Al-Tawaha, M. Adnan, S. Fahad, and B. Parmar. 2019. Organic matter management in cereals based system: Symbiosis for improving crop productivity and soil health. In Sustainable agriculture reviews, ed. R. Lal and R. Francaviglia, vol. 29. Cham: Springer.
  • Ansari, A. A., and K. K. Sukhraj. 2010. Effect of vermiwash and vermicompost on soil parameters and productivity of okra in Guyana. African Journal of Agricultural Research 5:1794–98.
  • Argaw, A. 2012. Evaluation of co-inoculation of Bradyrhizobium japonicum and phosphate solubilizing pseudomonas spp. Effect on soybean (Glycine max L.) in Assossa Area. Journal of Agriculture, Science and Technology 14:213–24.
  • Assiouty, F. M., and S. A. Abo-Sedera. 2005. Effect of bio and chemical fertilizers on seed production and quality of spinach. International Journal of Agriculture and Biology 6:947–52.
  • Ayoub, M., S. Guertin, S. Lussier, and D. L. Smith. 1994. Timing and level of nitrogen fertilizer effects on spring wheat yield in eastern Canada. Crop Science 34 (3):748–56. doi: 10.2135/cropsci1994.0011183X003400030027x.
  • Begum, M. A., M. A. Islam, Q. M. Ahmed, M. A. Islam, and M. M. Rahman. 2015. Effect of nitrogen and phosphorus on the growth and yield performance of soybean. Research in Agriculture Livestock and Fisheries 2 (1):35–42. doi: 10.3329/ralf.v2i1.23027.
  • Bellore, S. K., and L. R. Mall. 1975. Chlorophyll content as an ecological index of dry matter production. Journal of the Indian Botanical Society 54:75–77.
  • Berg, R. K., and J. Q. Lynd. 1985. Soil fertility effects on growth, yield, nodulation and nitrogenase activity of Australian winter pea. Journal of Plant Nutrition8 (2):131–45. doi: 10.1080/01904168509363330.
  • Bouranis, D., S. N. Chorianopoulou, C. Kollias, P. Maniou, V. E. Protonotarios, V. F. Siyiannis, and M. J. Hawkesford. 2006. Dynamics of aerenchyma distribution in the cortex of sulfate-deprived adventitious roots of maize. Annals of Botany 97 (5):695–704. doi: 10.1093/aob/mcl024.
  • Boyer, J., and M. Westgate. 2004. Grain yields with limited water. Journal of Experimental Botany 55 (407):2385–94. doi: 10.1093/jxb/erh219.
  • Brady, N. and R. Weil. 2002. Phosphorus and potassium. In The nature and properties of soils. New Delhi: Prentice-Hall of India Pvt. Limited, 352.
  • Carsky, R. J., B. B. Singh, and R. Oyewole. 2001. Contribution of early-season cowpea to late season maize in the savanna zone of West Africa. Biological Agriculture & Horticulture 18 (4):303–15. doi: 10.1080/01448765.2001.9754894.
  • Cassman, K. G., A. S. Whitney, and R. L. Fox. 1981. Phosphorus requirements of soybean and cowpea as affected by mode of nitrogen nutrition. Agronomy Journal 73 (1):17–22. doi: 10.2134/agronj1981.00021962007300010005x.
  • Chen, Y. P., P. D. Rekha, A. B. Arun, F. T. Shen, W.-A. Lai, and C. C. Young. 2006. PSB from subtropical soil and their tri-calcium phosphate solubilizing abilities. Applied Soil Ecology 34 (1):33–41. doi: 10.1016/j.apsoil.2005.12.002.
  • Chiezey, U. F., and A. C. Odunze. 2012. Soybean response to application of poultry manure and phosphorus fertilizer in the Sub-humid Savanna of Nigeria. Journal of Ecology and the Natural Environment 1:25–31.
  • de Souza, T. C., E. M. de Castro, P. C. Magalhães, L. D. O. Lino, E. T. Alves, and E. P. de Albuquerque. 2013. Morphophysiology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress. Acta Physiologiae Plantarum 35 (11):3201–11. doi: 10.1007/s11738-013-1355-1.
  • Entringer, G. C., F. L. Guedes, A. A. Oliveira, J. P. Nascimento, and J. C. Souza. 2014. Genetic control of leaf curl in maize. Genetics and Molecular Research 13 (1):1672–78. doi: 10.4238/2014.January.22.3.
  • Hachez, C., D. Veselov, Q. Ye, H. Reinhardt, T. Knipfer, W. Fricke, and F. Chaumont. 2012. Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms. Plant, Cell & Environment 35 (1):185–98. doi: 10.1111/j.1365-3040.2011.02429.x.
  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh. 2015. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522 (7557):465–69. doi: 10.1038/nature14550.
  • Hu, X., L. Wu, F. Zhao, D. Zhang, N. Li, G. Zhu, C. Li, and W. Wang. 2015. Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress. Frontiers in Plant Science 6:298.
  • Hu, X. L., Y. F. Yang, F. P. Gong, D. Y. Zhang, W. Wang, L. Wu, C. Li, and W. Wang. 2015. Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). Journal of Proteomics 115:81–92. doi: 10.1016/j.jprot.2014.12.009.
  • Huang, H., I. M. Mølle, and S. Q. Song. 2012. Proteomics of desiccation tolerance during development and germination of maize embryos. Journal of Proteomics 75 (4):1247–62. doi: 10.1016/j.jprot.2011.10.036.
  • Imran. 2017. Climate change is a real fact confronting to agricultural productivity. International Journal of Environmental Sciences & Natural Resources 3:555613. doi: 10.19080/IJESNR.2017.03.555613.
  • Imran, Amanullah, and A. R. M. Al-Tawaha. 2020. The productivity of subsequent wheat enhanced with residual carbon sources and phosphorus under improved irrigation system. Communications in Soil Science and Plant Analysis 51:1306–14. doi: 10.1080/00103624.2020.1763387.
  • Imran, Amanullah, and A. M. Al Tawaha. 2021. Management of nano-black carbon, phosphorous and bio fertilizer improve soil organic carbon and ensilage biomass of soybean and maize. Communications in Soil Science and Plant Analysis. 52:2837–51. doi: 10.1080/00103624.2021.1966439.
  • Imran, Amanullah, A. Ali Khan, T. Mahmood, A. R. Al Tawaha, and S. Khanum. 2021. Adequate fertilization, application method and sowing techniques improve maize yield and related traits. Communications in Soil Science and Plant Analysis 52 (19):2318–30. doi: 10.1080/00103624.2021.1925688.
  • Imran, Amanullah, A. Bari, and R. Ali. 2018. Peach sources, phosphorous and beneficial microbes enhance productivity of soybean. Soybean Research 16:39–48.
  • Imran, Amanullah, A. Bari, H. Khan, and R. Ali. 2019. Climatic variability and agronomic cropping pattern. In Agronomic crops. Production technology, vol. 1. 33-44.
  • Imran, A. Bari, R. Ali, N. Ahmad, Z. Ahmad, M. I. Khattak, A. Ali, F. Ahmad, I. Khan, and S. Naveed. 2017. Traditional rice farming accelerate CH4 and N2O emissions functioning as a stronger contributors of climate change. International Journal of Environmental Sciences & Natural Resources 9:89–92.
  • Imran, and A. A. Khan. 2017. Canola yield and quality enhanced with sulphur fertilization. Russian Agricultural Sciences 43:113. doi: 10.3103/S1068367417020100.
  • Jaramillo, R. E., E. A. Nord, J. G. Chimungu, K. M. Brown, and J. P. Lynch. 2013. Root cortical burden influences drought tolerance in maize. Annals of Botany 112 (2):429–37. doi: 10.1093/aob/mct069.
  • Jones, T. J. 2009. Maize tissue culture and transformation: The first 20 years. In Molecular genetic approaches to maize improvement, ed. A. L. Kriz and B. A. Larkins, 7–27. Heidelberg: Springer.
  • Ku, L. X., X. M. Wei, S. F. Zhang, J. Zhang, S. L. Guo, and Y. Chen. 2011. Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). PloS One 6 (6):e20621. doi: 10.1371/journal.pone.0020621.
  • Ku, L. X., J. Zhang, S. L. Guo, H. Y. Liu, R. F. Zhao, and Y. H. Chen. 2012. Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.). Journal of Experimental Botany 63 (1):261–74. doi: 10.1093/jxb/err277.
  • Ku, L. X., W. M. Zhao, J. Zhang, L. C. Wu, C. L. Wang, P. A. Wang, W. Q. Zhang, and Y. H. Chen. 2010. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor. Appl. Genet. [Theor. Angew. Genet.] 121 (5):951–59. doi: 10.1007/s00122-010-1364-z.
  • Landi, P., S. Giuliani, S. Salvi, M. Ferri, R. Tuberosa, and M. C. Sanguineti. 2010. Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. Journal of Experimental Botany 61 (13):3553–62. doi: 10.1093/jxb/erq192.
  • Li, K., C. Xu, K. Zhang, A. Yang, and J. Zhang. 2007. Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (Zea mays L.) plants. Proteomics 7 (9):1501–12. doi: 10.1002/pmic.200600960.
  • Lobell, D. B., M. J. Roberts, W. Schlenker, N. Braun, B. B. Little, R. M. Rejesus, and G. L. Hammer. 2014. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344 (6183):516–19. doi: 10.1126/science.1251423.
  • Luo, L. J. 2010. Breeding for water-saving and drought-resistance rice (WDR) in China. Journal of Experimental Botany 61 (13):3509–17. doi: 10.1093/jxb/erq185.
  • Lynch, J. P. 2013. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany 112 (2):347–57. doi: 10.1093/aob/mcs293.
  • Mano, Y., F. Omori, T. Takamizo, B. Kindiger, R. M. Bird, and C. H. Loaisiga. 2006. Variation for root aerenchyma formation in flooded an non-flooded maize and teosinte seedlings. Plant and Soil 281 (1–2):269–79. doi: 10.1007/s11104-005-4268-y.
  • Martre, P., B. Quilot-Turion, D. Luquet, M. M. Ould-Sidi Memmah, K. Chenu, and P. Debaeke. 2015. Model-assisted phenotyping and ideotype design. In Crop physiology, ed. V. Sadras and D. Calderini, 349–73. London: Academic Press.
  • Meister, R., M. S. Rajani, D. Ruzicka, and D. P. Schachtman. 2014. Challenges of modifying root traits in crops for agriculture. Trends in Plant Science 19 (12):779–88. doi: 10.1016/j.tplants.2014.08.005.
  • Munns, R., R. A. James, X. R. Sirault, R. T. Furbank, and H. G. Jones. 2010. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. Journal of Experimental Botany 61 (13):3499–507. doi: 10.1093/jxb/erq199.
  • Nuccio, M. L., J. Wu, R. Mowers, H. P. Zhou, M. Meghji, L. F. Primavesi, M. Paul, X. Chen, Y. Gao, E. Haque, et al. 2015. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology 33 (8):862–69. doi: 10.1038/nbt.3277.
  • Ort, D. R., and S. P. Long. 2014. Limits on yields in the corn belt. Science 344 (6183):484–85. doi: 10.1126/science.1253884.
  • Postma, J. A., A. Dathe, and J. P. Lynch. 2014. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiology 166 (2):590–602. doi: 10.1104/pp.113.233916.
  • Postma, J. A., and J. P. Lynch. 2011a. Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Annals of Botany 107 (5):829–41. doi: 10.1093/aob/mcq199.
  • Postma, J. A., and J. P. Lynch. 2011b. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium. Plant Physiology 156 (3):1190–201. doi: 10.1104/pp.111.175489.
  • Saengwilai, P. P., X. L. Tian, and J. P. Lynch. 2014. Low crown root number enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiology 166 (2):581–9. doi: 10.1104/pp.113.232603.
  • Shelden, M. C., and U. Roessner. 2013. Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Frontiers in Plant Science 4:123.
  • Shi, J., and J. Lai. 2015. Patterns of genomic changes with crop domestication and breeding. Current Opinion in Plant Biology 24:47–53. doi: 10.1016/j.pbi.2015.01.008.
  • Simons, M., R. Saha, L. Guillard, G. Clément, P. Armengaud, R. Cañas, C. D. Maranas, P. J. Lea, and B. Hirel. 2014. Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling. Journal of Experimental Botany 65 (19):5657–71. doi: 10.1093/jxb/eru227.
  • Steel, R. G. d., and J. H. Terrie. 1996. Principles and procedures of statistics: A biometrical approach, 2nd ed. New York: McGraw-Hill.
  • Trevisan, S., A. Manoli, L. Ravazzolo, A. Botton, M. Pivato, A. Masi, and S. Quaggiotti. 2015. Nitrate sensing by the maize root apex transition zone: A merged transcriptomic and proteomic survey. Journal of Experimental Botany 66 (13):3699–715. doi: 10.1093/jxb/erv165.
  • Yin, H., C. J. Chen, J. Yang, D. J. Weston, J.-G. Chen, W. Muchero, N. Ye, T. J. Tschaplinski, S. D. Wullschleger, Z.-M. Cheng, et al. 2014. Functional genomics of drought tolerance in bioenergy crops. Critical Reviews in Plant Sciences 33 (2–3):205–24. doi: 10.1080/07352689.2014.870417.
  • York, L. M., T. Galindo-Castañeda, J. R. Schussler, and J. P. Lynch. 2015. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. Journal of Experimental Botany 66 (8):2347–58. doi: 10.1093/jxb/erv074.
  • Zhan, A., and J. P. Lynch. 2015. Reduced frequency of lateral root branching improves N capture from low-N soils in maize. Journal of Experimental Botany 66 (7):2055–65. doi: 10.1093/jxb/erv007.
  • Zhan, A., H. Schneider, and J. P. Lynch. 2015. Reduced lateral root branching density improves drought tolerance in maize. Plant Physiology 168 (4):1603–15. doi: 10.1104/pp.15.00187.
  • Zurek, P. R., C. N. Topp, and P. N. Benfey. 2015. Quantitative trait locus mapping reveals regions of the maize genome controlling root system architecture. Plant Physiology 167 (4):1487–96. doi: 10.1104/pp.114.251751.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.