246
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Zinc fertilization strategies in soybean: plant uptake, yield, and seed concentration

ORCID Icon, , , , , & show all
Pages 1134-1144 | Received 25 May 2021, Accepted 01 Mar 2022, Published online: 23 Apr 2022

References

  • Bender, R. R., J. W. Haegele, and F. E. Below. 2015. Uptake, partitioning, and remobilization in modern soybean varieties. Agronomy Journal 107 (2):563–73. doi: 10.2134/agronj14.0435.
  • Benton, J., Jr., J. J. Mortvedt, F. R. Cox, L. M. Shuman, and R. M. Welch. 1991. Plant tissue analysis in micronutrients. In ’Micronutrients in agriculture, 477–521. Madison, WI: SSSA Inc. doi: 10.2136/sssabookser4.2ed.c13.
  • Bouis, H. E., and R. M. Welch. 2010. Biofortification: A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science 50: S-20–32. doi: 10.2135/cropsci2009.09.0531.
  • Dai, H., S. Wei, and I. Twardowska. 2020. Biofortification of soybean (Glycine max L.) with Se and Zn, and enhancing its physiological functions by spiking these elements to soil during flowering phase. The Science of the Total Environment 740:139648. doi: 10.1016/j.scitotenv.2020.139648.
  • Dalling, J. W., K. Winter, K. M. Andersen, and B. L. Turner. 2013. Artefacts of the pot environment on soil nutrient availability: Implications for the interpretation of ecological studies. Plant Ecology 214 (2):329–38. doi: 10.1007/s11258-013-0172-3.
  • De Oliveira, N. T., P. M. De Rezende, M. De Fatima Piccolo Barcelos, and A. T. Bruzi. 2019. Zinc biofortification strategies in food-type soybean cultivars. Australian Journal of Crop Science 13 (01):11–6. doi: 10.21475/ajcs.19.13.01.p783.
  • Di Mauro, G., P. A. Cipriotti, S. Gallo, and J. L. Rotundo. 2018. Environmental and management variables explain soybean yield gap variability in Central Argentina. European Journal of Agronomy 99:186–94. doi: 10.1016/j.eja.2018.04.012.
  • Ellis, R., Jr., J. F. Davis, and D. L. Thurlow. 1964. Zinc availability in calcareous Michigan soils as influenced by phosphorus level and temperature. Soil Science Society of America Journal 28 (1):83–6. doi: 10.2136/sssaj1964.03615995002800010038x.
  • Enderson, J., A. P. Mallarino, and M. U. Haq. 2015. Soybean yield response to foliar-applied micronutrients and relationships among soil and tissue tests. Agronomy Journal 107 (6):2143–61. doi: 10.2134/agronj14.0536.
  • Fehr, W. R., and C. E. Caviness. 1977. Stages of soybean development. Iowa State University Cooperative Extension Service, Agriculture and Home Economics Experiment Station, Special Report No. 80, Ames.
  • Fernández, M. A., O. E. Soulages, S. G. Acebal, E. H. Rueda, and R. Sánchez. 2015. Sorption of Zn (II) and Cu (II) by four Argentinean soils as affected by pH, oxides, organic matter and clay content. Environmental Earth Sciences 74 (5):4201–14. doi: 10.1007/s12665-015-4518-0.
  • Flies, E. J., B. W. Brook, L. Blomqvist, and J. C. Buettel. 2018. Forecasting future global food demand: A systematic review and meta-analysis of model complexity. Environment International 120:93–103. doi: 10.1016/j.envint.2018.07.019.
  • García, F. O., I. A. Ciampitti, and H. Baigorri. 2009. ’Manual del cultivo de sojá. 180p. Buenos Aires: International Plant Nutrition Institute.
  • Gee, G. W., and J. W. Bauder. 1986. Particle size analysis. In Methods of soil analysis, ed. A. Klute, Vol. 1, 383–411. Madison, WI: SSSA Inc. doi: 10.2136/sssabookser5.1.2ed.c15.
  • Grassini, P., N. C. La Menza, J. I. R. Edreira, J. P. Monzón, F. A. Tenorio, and J. E. Specht. 2021. Soybean. In Crop physiology case histories for major crops, 282–319. London, UK: Academic Press. doi: 10.1016/B978-0-12-819194-1.00008-6.
  • Han, X., X. Li, N. Uren, and C. Tang. 2011. Zinc fractions and availability to soybeans in representative soils of Northeast China. Journal of Soils and Sediments 11 (4):596–606. doi: 10.1007/s11368-011-0336-5.
  • Heidarian, A. R., H. Kord, K. Mostafav, A. P. Lak, and F. A. Mashhadi. 2011. Investigating Fe and Zn foliar application on yield and its components of soybean (Glycine max (L) Merr.) at different growth stages. Journal of Agricultural Biotechnology and Sustainable Development 3:189–97. doi: 10.5897/JABSD.9000024.
  • Huang, C., M. J. Webb, and R. D. Graham. 1996. Pot size affects expression of Mn efficiency in barley. Plant and Soil 178 (2):205–8. doi: 10.1007/BF00011584.
  • Jiang, H., and D. B. Egli. 1995. Soybean seed number and crop growth rate during flowering. Agronomy Journal 87 (2):264–7. doi: 10.2134/agronj1995.00021962008700020020x.
  • Jiménez, M. P., D. Effrón, A. M. De La Horra, and R. Defrieri. 1996. Foliar potassium, calcium, magnesium, zinc, and manganese content in soybean cultivars at different stages of development. Journal of Plant Nutrition 19 (6):807–16. doi: 10.1080/01904169609365163.
  • Kumar, S., and G. Pandey. 2020. Biofortification of pulses and legumes to enhance nutrition. Heliyon 6 (3):e03682. doi: 10.1016/j.heliyon.2020.e03682.
  • Lavado, R. S., C. A. Porcelli, and R. Alvarez. 2001. Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillage systems in the Argentine Pampas. Soil and Tillage Research 62 (1–2):55–60. doi: 10.1016/S0167-1987(01)00216-1.
  • Leite, C. M. C., A. da Silva, F. R. C. F. César, G. F. Guimarães, E. Almeida, and T. Muraoka. 2020. Low efficiency of Zn uptake and translocation in plants provide poor micronutrient enrichment in rice and soybean grains. Journal of Plant Nutrition 43 (1):79–91. doi: 10.1080/01904167.2019.1659341.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese and cooper. Soil Science Society of America Journal 42 (3):421–8. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Liu, D. Y., W. Zhang, P. Yan, X. P. Chen, F. S. Zhang, and C. Q. Zou. 2017. Soil application of zinc fertilizer could achieve high yield and high grain zinc concentration in maize. Plant and Soil 411 (1–2):47–55. doi: 10.1007/s11104-016-3105-9.
  • Ma, Y. B., and N. C. Uren. 1997. The effects of temperature, time and cycles of drying and rewetting on the extractability of zinc added to a calcareous soil. Geoderma 75 (1–2):89–97. doi: 10.1016/S0016-7061(96)00080-8.
  • Martínez Cuesta, N., W. Carciochi, H. Sainz Rozas, M. Eyherabide, N. Wyngaard, J. C. Colazo, G. Ferraris, F. Salvagiotti, and P. Barbieri. 2021. Effect of zinc application strategies on maize grain yield and zinc concentration in Mollisols. Journal of Plant Nutrition 44 (4):486–97. doi: 10.1080/01904167.2020.1844754.
  • McConnaughay, K. D. M., and F. A. Bazzaz. 1991. Is physical space a soil resource? Ecology 72 (1):94–103. doi: 10.2307/1938905.
  • Moraghan, J. T., and T. C. Helms. 2005. Seed zinc of soybean as an indicator of zinc status of the mother plant. Journal of Plant Nutrition 28 (1):161–71. doi: 10.1081/PLN-200042252.
  • Ning, P., X. Zhang, T. Wu, Y. Li, S. Wang, P. Fei, J. Dong, J. Shi, and X. Tian. 2021. Biofortification of wheat with zinc as affected by foliar applications of zinc, pesticides, phosphorus and biostimulants. Crop and Pasture Science 73 (2):3–12. doi: 10.1071/CP20455.
  • Ortez, O. A., S. Tamagno, F. Salvagiotti, P. V. V. Prasad, and I. A. Ciampitti. 2019. Soybean nitrogen sources and demand during the seed‐filling period. Agronomy Journal 111 (4):1779–87. doi: 10.2134/agronj2018.10.0656.
  • Passioura, J. B. 2006. The perils of pot experiments. Functional Plant Biology: FPB 33 (12):1075–9. doi: 10.1071/FP06223.
  • Payero, J. O., and S. Irmak. 2013. Daily energy fluxes, evapotranspiration and crop coefficient of soybean. Agricultural Water Management 129:31–43. doi: 10.1016/j.agwat.2013.06.018.
  • Poorter, H., J. B. Hler, D. van Dusschoten, J. Climent, and J. A. Postma. 2012. Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology: FPB 39 (11):839–50. doi: 10.1071/FP12049.
  • Praharaj, S., M. Skalicky, S. Maitra, P. Bhadra, T. Shankar, M. Brestic, V. Hejnak, P. Vachova, and A. Hossain. 2021. Zinc biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules 26 (12):3509. doi: 10.3390/molecules26123509.
  • Rashid, A., and R. L. Fox. 1992. Evaluating internal zinc requirements of grain crops by seed analysis. Agronomy Journal 84 (3):469–74. doi: 10.2134/agronj1992.00021962008400030022x.
  • Roberts, T. L. 2007. Right product, right rate, right time and right place (the foundation of best management practices for fertilizer. Fertilizer Best Management Practices. General Principles, Strategy for their Adoption, and Voluntary Initiatives vs. Regulations. Procedures of IFA International Workshop, 7–9 March 2007, Brussels, Belgium, International Fertilizer Industry Association, Paris, France, 29–32.
  • Rubio, G., F. X. Pereyra, and M. A. Taboada. 2019. Soils of the Pampean region. In The soils of Argentina. World Soils Book Series, ed. G. Rubio, R. Lavado, and F. Pereyra, 81–100. Cham: Springer. doi: 10.1007/978-3-319-76853-3_6.
  • Sadeghzadeh, B. 2013. A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition 13. doi: 10.4067/S0718-95162013005000072.
  • Sainz Rozas, H., M. Puricelli, M. Eyherabide, P. A. Barbieri, H. E. R. Echeverría, N. I. Calvo, and J. P. Martínez. 2015. Available zinc levels in soils of Argentina. International Journal of Agronomy and Agricultural Research 7:59–71.
  • Sainz Rozas, H., M. Eyherabide, G. Larrea, N. Martínez Cuesta, H. Angelini, N. Reussi Calvo, and N. Wyngaard. 2019. Relevamiento y determinación de propiedades químicas en suelos de aptitud agrícola de la región pampeana [Survey and measurements of chemical properties in soils of agricultural aptitude of the Pampas region]. Proceedings of the Simposio de Fertilidad 2019, Conocer Más y Mejor; May 8–9; Rosario, Argentina, 141–58. Buenos Aires: Fertilizar Asociación Civil. Accessed March 27, 2021. https://www.fertilizar.org.ar/subida/evento/Simposio2019/ActaSimposioFertilidad2019.pdf/. (In Spanish).
  • Sánchez-Rodríguez, A. R., M. Marín-Paredes, A. González-Guzmán, J. M. Méndez, M. Sánchez-Parra, D. Sacristán, M. Fuentes-García, V. Barrón, J. Torrent, and M. C. del Campillo. 2021. Zinc biofortification strategies for wheat grown on calcareous Vertisols in southern Spain: Application method and rate. Plant and Soil 462 (1–2):125–40. doi: 10.1007/s11104-021-04863-7.
  • SAS Institute Inc. 2009. SAS/STAT 9.2 user’s guide. Cary, NC: SAS Institute Inc. doi: 10.1111/j.1532-5415.2004.52225.x.
  • Schulte, E. E., and B. G. Hopkins. 1996. Estimation of organic matter by weight loss-on-ignition. In Soil organic matter: Analysis and interpretation, ed. F. R. Magdoff, M. A. Tabatabai, and E. A. Hanlon, Jr., 21–31. Madison, WI: SSSA Inc. doi: 10.2136/sssaspecpub46.c3.
  • Sharma, P., P. Aggarwal, and A. Kaur. 2017. Biofortification: A new approach to eradicate hidden hunger. Food Reviews International 33 (1):1–21. doi: 10.1080/87559129.2015.1137309.
  • Small, H. G., and A. J. Ohlrogge. 1973. Plant analysis as an aid in fertilizing soybeans and peanuts. In Soil testing and plant analysis, ed. L. M. Walsh and J. D. Beaton, 315–28. Madison, WI: SSSA INC.
  • Sucunza, F. A., F. H. Gutiérrez Boem, F. O. Garcia, M. Boxler, and G. Rubio. 2018. Long-term phosphorus fertilization of wheat, soybean and maize on Mollisols: Soil test trends, critical levels and balances. European Journal of Agronomy 96:87–95. doi: 10.1016/j.eja.2018.03.004.
  • Sutradhar, A. K., D. E. Kaiser, and L. M. Behnken. 2017. Soybean response to broadcast application of boron, chlorine, manganese, and zinc. Agronomy Journal 109 (3):1048–59. doi: 10.2134/agronj2016.07.0389.
  • Torres Duggan, M., R. Melgar, M. B. Rodríguez, R. S. Lavado, and I. A. Ciampitti. 2012. Sulfur fertilization technology in the Argentine Pampas region: A review. Revista Agronomía & Ambiente 32:61–73.
  • Ullah, A., M. Farooq, F. Nadeem, A. Rehman, A. Nawaz, M. Naveed, A. Wakeel, and M. Hussain. 2020. Zinc seed treatments improve productivity, quality and grain biofortification of desi and kabuli chickpea (Cicer arietinum). Crop and Pasture Science 71 (7):668–78. doi: 10.1071/CP19266.
  • United States Department of Agriculture. 2014. Keys to soil taxonomy, Natural Resources Conservation Service, Soil Survey Staff. Washington, DC: United States Government Printing Office.
  • Wallace, A., E. M. Romney, V. Q. Hale, and R. M. Hoover. 1969. Effects of soil temperature and zinc application on yields and micronutrient content of four crop species grown together in a glasshouse. Agronomy Journal 61 (4):567–8. doi: 10.2134/agronj1969.00021962006100040025x.
  • Zulfiqar, U., S. Hussain, M. Maqsood, M. Ishfaq, and N. Ali. 2021. Zinc nutrition to enhance rice productivity, zinc use efficiency, and grain biofortification under different production systems. Crop Science 61 (1):739–49. doi: 10.1002/csc2.20381.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.