157
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Assaying the efficiency of sulfate, chelate and zinc nanoparticle fertilizers in green bean grown in alkaline soil

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 653-664 | Received 14 Jun 2021, Accepted 27 Jan 2022, Published online: 26 Apr 2022

References

  • Alloway, B. J. 2008. Zinc in soils and crop nutrition. 3th ed. Belgium: International Zinc Association Brussels.
  • Almendros, P., A. Obrador, J. M. Alvarez, and D. Gonzalez. 2019. Zn-DTPA-HEDTA-EDTA application: A strategy to improve the yield and plant quality of a barley crop while reducing the N application rate. Journal of Soil Science and Plant Nutrition 19 (4):920–34. doi: 10.1007/s42729-019-00090-3.
  • Álvarez, S. P., J. P. Sida-Arrerola, E. S. Chávez, and EFH. Ardisana. 2017. Expression analysis and biochemical characterization of beans plants biofortificated with zinc. Saudi Journal of Biological Sciences 24 (6):1322–6. doi: 10.1016/j.sjbs.2016.12.014.
  • Campos-Vega, R., P. Z. Bassinello, R. Santiago, and BD. Oomah. 2018. Dry beans: Processing and nutritional effects. In Therapeutic, probiotic, and unconventional foods, 367–86. https://doi.org/10.1016/B978-0-12-814625-5.00019-4
  • Davarpanah, S., A. Tehranifar, G. Davarynejad, J. Abadía, and R. Khorasani. 2016. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia Horticulturae. 210:57–64. doi: 10.1016/j.scienta.2016.07.003.
  • De Castro, F. A., E. Campostrini, A. T. Netto, M. Gomes, T. M. Ferraz, and DM. Glenn. 2014. Portable chlorophyll meter (PCM-502) values are related to total chlorophyll concentration and photosynthetic capacity in papaya (Carica papaya L.). Theoretical and Experimental Plant Physiology 26 (3-4):201–10. doi: 10.1007/s40626-014-0018-y.
  • Du, W., J. Yang, Q. Peng, X. Liang, and H. Mao. 2019. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 227:109–16. doi: 10.1016/j.chemosphere.2019.03.168.
  • Elliott, G. C., and A. Läuchli. 1985. Phosphorus efficiency and phosphate-iron interaction in maize. Agronomy Journal 77 (3):399–403. doi: 10.2134/agronj1985.00021962007700030011x.
  • Faizan, M., A. Faraz, M. Yusuf, S. T. Khan, and S. Hayat. 2018. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56 (2):678–86. doi: 10.1007/s11099-017-0717-0.
  • FAO (Food and Agriculture Organization of the United Nations). 2018a. Legumbres. Pequeñas semillas, grandes soluciones. Panama.
  • FAO (Food and Agriculture Organization of the United Nations). 2018b. FAOSTAT. http://www.fao.org/faostat/en/#data/QC
  • Ghormade, V., M. V. Deshpande, and KM. Paknikar. 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances 29 (6):792–803. doi: 10.1016/j.biotechadv.2011.06.007.
  • Gomez, A., M. Narayan, L. Zhao, X. Jia, R. A. Bernal, M. L. Lopez-Moreno, and J. R. Peralta-Videa. 2021. Effects of nano-enabled agricultural strategies on food quality: Current knowledge and future research needs. Journal of Hazardous Materials 401:123385. doi: 10.1016/j.jhazmat.2020.123385.
  • Guo, L., Y. L. Ji, H. Xu, P. Simon, and Z. Wu. 2002. Regularly shaped, single-crystalline ZnO nanorods with Wurtzite structure. Journal of the American Chemical Society 124 (50):14864–5. doi:10.1021/ja027947g. 12475325
  • Havlin, J. L., S. L. Tisdale, W. L. Nelson, and J. D. Beaton. 2014. Soil fertility and fertilizer: An introduction to nutrient management. United State of America: Pearson. ISBN-13: 978-0-13-503373-9
  • Kan, L., S. Nie, J. Hu, S. Wang, Z. Bai, J. Wang, Y. Zhou, J. Jiang, Q. Zeng, and K. Song. 2018. Comparative study on the chemical composition, anthocyanins, tocopherols and carotenoids of selected legumes. Food Chemistry 260:317–26. doi: 10.1016/j.foodchem.2018.03.148.
  • Kheyri, N., H. A. Norouzi, H. R. Mobasser, and B. Torabi. 2019. Effects of silicon and zinc nanoparticles on growth, yield, and biochemical characteristics of rice. Agronomy Journal 111 (6):3084–90. doi: 10.2134/agronj2019.04.0304.
  • Liu, R., and R. Lal. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. The Science of the Total Environment 514:131–9. doi: 10.1016/j.scitotenv.2015.01.104.
  • Lucena, J. J. 2009. El empleo de complejantes y quelatos en la fertilización de micronutrientes. Revista Ceres 56:527–35.
  • Mahdieh, M., M. R. Sangi, F. Bamdad, and A. Ghanem. 2018. Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. Journal of Plant Nutrition 41 (18):2401–12. doi: 10.1080/01904167.2018.1510517.
  • Mirbolook, A., A. Lakzian, M. R. Sadaghiani, E. Sepehr, and M. Hakimi. 2020. Fortification of Bread Wheat Using Synthesized Zn-Glycine and Zn-Alanine Chelates in Comparison with ZnSO4 in a Calcareous Soil. Communications in Soil Science and Plant Analysis 51 (8):1048–64. doi: 10.1080/00103624.2020.1744635.
  • Navarro-León, E., Y. Barrameda-Medina, M. Lentini, S. Esposito, J. M. Ruiz, and B. Blasco. 2016. Comparative study of Zn deficiency in L. sativa and B. oleracea plants: NH4(+) assimilation and nitrogen derived protective compounds. Plant Science : An International Journal of Experimental Plant Biology 248:8–16. doi: 10.1016/j.plantsci.2016.04.002.
  • Obrador, A., J. Novillo, and J. M. Alvarez. 2003. Mobility and availability to plants of two zinc sources applied to a calcareous soil. Soil Science Society of America Journal 67 (2):564–72. doi: 10.2136/sssaj2003.5640.
  • Omuto, C., F. Nachtergaele, and R. V. Rojas. 2013. State of the art report on global and regional soil information: Where are we? Where to go? Rome: Food and Agriculture Organization of the United Nations, 81.
  • Ponce-García, C., J. Soto-Parra, E. Sánchez, E. Muñoz-Márquez, F. Piña-Ramírez, M. Flores-Córdova, R. Pérez-Leal, and R. Yáñez Muñoz. 2019. Efficiency of nanoparticle, sulfate, and zinc-chelate use on biomass, yield, and nitrogen assimilation in green beans. Agronomy 9 (3):128. doi: 10.3390/agronomy9030128.
  • Pullagurala, V., I. O. Adisa, S. Rawat, S. Kalagara, J. A. Hernandez-Viezcas, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2018. ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). Plant Physiology and Biochemistry 132:120–7. doi: 10.1016/j.plaphy.2018.08.037.
  • Rehman, A., M. Farooq, L. Ozturk, M. Asif, and K. H. Siddique. 2018. Zinc nutrition in wheat-based cropping systems. Plant and Soil 422 (1–2):283–315. doi: 10.1007/s11104-017-3507-3.
  • Rengel, Z. 2015. Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition 15 (2):397–409. doi: 10.4067/S0718-95162015005000036.
  • Rossi, L., L. N. Fedenia, H. Sharifan, X. Ma, and L. Lombardini. 2019. Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry : PPB 135:160–6. doi: 10.1016/j.plaphy.2018.12.005.
  • Roy, S., K. Arunachalam, B. K. Dutta, and A. Arunachalam. 2010. Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Applied Soil Ecology 45 (2):78–84. doi: 10.1016/j.apsoil.2010.02.004.
  • Sadeghzadeh, B. 2013. A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition 13 (4):905–927. doi: 10.4067/S0718-95162013005000072.
  • Sánchez, E., R. M. Rivero, J. M. Ruiz, and L. Romero. 2004. Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L. cv. Strike) under high NH4NO3 application rates. Scientia Horticulturae 99 (3-4):237–48. doi:10.1016/S0304-4238(03)00114-6.
  • Seleiman, M. F., K. F. Almutairi, M. Alotaibi, A. Shami, B. A. Alhammad, and M. L. Battaglia. 2021. Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use. Plants 10 (1):2. doi: 10.3390/plants10010002.
  • Siddiqi, M. Y., and A. D. M. Glass. 1981. Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants. Journal of Plant Nutrition. 4 (3):289–302. doi: 10.1080/01904168109362919.
  • Song, U., and J. Kim. 2020. Zinc oxide nanoparticles: A potential micronutrient fertilizer for horticultural crops with little toxicity. Horticulture, Environment, and Biotechnology 61 (3):625–31. doi: 10.1007/s13580-020-00244-8.
  • Sturikova, H., O. Krystofova, D. Huska, and V. Adam. 2018. Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials 349:101–10.
  • Sun, T., H. Yuan, H. Cao, M. Yazdani, Y. Tadmor, and L. Li. 2018. Carotenoid metabolism in plants: The role of plastids. Molecular Plant 11 (1):58–74. doi: 10.1016/j.molp.2017.09.010.
  • Tombuloglu, H., I. Ercan, T. Alshammari, G. Tombuloglu, Y. Slimani, M. Almessiere, and A. Baykal. 2020. Incorporation of micro-nutrients (nickel, copper, zinc, and iron) into plant body through nanoparticles. Journal of Soil Science and Plant Nutrition 20 (4):1872–81. doi: 10.1007/s42729-020-00258-2.
  • Wang, Z., J. Chen, Y. Fan, Y. Cheng, X. Wu, J. Zhang, B. Wang, X. Wang, T. Yong, W. Liu, et al. 2020. Evaluating photosynthetic pigment contents of maize using UVE-PLS based on continuous wavelet transform. Computers and Electronics in Agriculture 169:105160. doi: 10.1016/j.compag.2019.105160.
  • Wellburn, A. R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144 (3):307–13. doi: 10.1016/S0176-1617(11)81192-2.
  • White, P. J., and M. R. Broadley. 2011. Physiological limits to zinc biofortification of edible crops. Frontiers in Plant Science 2 (80):80.
  • Wolf, B. 1982. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis 13 (12):1035–59. doi: 10.1080/00103628209367332.
  • Zulfiqar, F., M. Navarro, M. Ashraf, N. A. Akram, and S. Munné-Bosch. 2019. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science : An International Journal of Experimental Plant Biology 289:110270. doi: 10.1016/j.plantsci.2019.110270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.