190
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Distribution of macro- and micronutrients in leaves, roots, and scapes of gerbera affected by calcium and humic acid

, ORCID Icon & ORCID Icon
Pages 2906-2918 | Received 05 Aug 2021, Accepted 03 Nov 2021, Published online: 01 May 2022

References

  • Albino-Garduño, R., H. A. Zavaleta-Mancera, L. M. Ruiz-Posadas,  M. Sandoval-Villa, and A. Castillo-Morales. 2008. Response of gerbera to calcium in hydroponics. Journal of Plant Nutrition.31 (1):91–101. ‏doi: 10.1080/01904160701741958.
  • Allahvirdizadeh, N., and M. N. Deljou. 2014. Effect of humic acid on morph-physiological traits, nutrients uptake and postharvest vase life of pot marigold cut flower (Calendula officinalis cv. Crysantha) in hydroponic system. Journal of Science and Technology of Greenhouse Culture 5 (2):133–43. ‏(In Persian).
  • Atkinson, C. J., L. P. Ruiz, and T. A. Mansfield. 1992. Calcium in the xylem sap and the regulation of its delivery to the shoot. Journal of Experimental Botany 43 (10):1315–24. doi: 10.1093/jxb/43.10.1315.
  • Böhme, M., and H. Thi Lua. 2001. Influence of humic acid on the growth of tomato in hydroponic systems. International Symposium on Growing Media and Hydroponics 451–8. ‏ doi: 10.17660/ActaHortic.2001.548.53.
  • Canellas, L. P., and F. L. Olivares. 2014. Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture 1 (1):3–278. doi: 10.1186/2196-5641-1-3.
  • Carafoli, E., and C. B. Klee. 1999. Calcium as a cellular regulator. New York: Oxford University Press.
  • Carter, C. T., and C. M. Grieve. 2008. Mineral nutrition, growth, and germination of Antirrhinum majus L. (snapdragon) when produced under increasingly saline conditions. HortScience 43 (3):710–8. ‏ doi: 10.21273/HORTSCI.43.3.710.
  • Chang, L., Y. Wu, W. Xu, A. Nikbakht, and Y. Xia. 2012. Effects of calcium and humic acid treatment on the growth and nutrient uptake of Oriental lily. African Journal of Biotechnology 11 (9):2218–22. ‏
  • Chen, X., M. Kou, Z. Tang, A. Zhang, H. Li, Y. Inukai, M. Ashikari, and H. Kitano. 2017. Responses of root physiological characteristics and yield of sweet potato to humic acid urea fertilizer. PLoS One 12 (12):e0189715. doi: 10.1371/journal.pone.0189715.
  • Chen, Y., and T. Aviad. 1990. Effects of humic substances on plant growth. In Humic substances in soil and crop sciences: Maccarthy, P. (Ed.), Selected readings, American Society of Agronomy & Soil Science Society of America, Madison, WI, USA, pp. 161–186.  ‏
  • Dayod, M., S. D. Tyerman, R. A. Leigh, and M. Gilliham. 2010. Calcium storage in plants and the implications for calcium biofortification. Protoplasma 247 (3–4):215–31. ‏ doi: 10.1007/s00709-010-0182-0.
  • De Kreij, C., and H. Başar. 1995. Effect of humic substances in nutrient film technique on nutrient uptake. Journal of Plant Nutrition.18 (4):793–802. ‏ doi: 10.1080/01904169509364938.
  • Iorio, E., C. Colombo, R. Angelico, R. Terzano, C. Porfido, F. Valentinuzzi, Y. Pii, T. Mimmo, and S. Cesco. 2019. Iron oxide‐humic acid coprecipitates as iron source for cucumber plants. Journal of Plant Nutrition and Soil Science 182 (6):921–33. ‏ doi: 10.1002/jpln.201800207.
  • Etienne, P., S. Diquelou, M. Prudent, C. Salon, A. Maillard, and A. Ourry. 2018. Macro and micronutrient storage in plants and their remobilization when facing scarcity: The case of drought. Agriculture 8 (1):14–22. doi: 10.3390/agriculture8010014.
  • Fan, H. M., T. Li, X. Sun, X. Z. Sun, and C. S. Zheng. 2015. Effects of humic acid derived from sediments on the postharvest vase life extension in cut chrysanthemum flowers. Postharvest Biology and Technology.101:82–7. ‏ doi: 10.1016/j.postharvbio.2014.09.019.
  • Geshnizjany, N., A. Ramezanian, and M. Khosh-Khui. 2014. Postharvest life of cut gerbera (Gerbera jamesonii) as affected by nano-silver particles and calcium chloride. International Journal of Horticultural Science 1 (2):171–80.
  • Haghighi, M., A. Nikbakht, Y. Ping Xia, and M. Pessarakli. 2014. Influence of humic acid in diluted nutrient solution on growth, nutrient efficiency, and postharvest attributes of gerbera. Communications in Soil Science and Plant Analysis 45 (2):177–88. doi: 10.1080/00103624.2013.848885.
  • Haghighi, M., and J. A. Teixeira Da Silva. 2013. Amendment of hydroponic nutrient solution with humic acid and glutamic acid in tomato (Lycopersicon esculentum Mill.) culture. Journal of Soil Science and Plant Nutrition.59 (4):642–8. ‏ doi: 10.1080/00380768.2013.809599.
  • Halpern, M., A. Bar-Tal, M. Ofek, D. Minz, T. Muller, and U. Yermiyahu. 2015. The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy 130:141–74.
  • Hyacinthe, L. G., P. Florian, D. Jean-Marc, G. Françoise, P. Jérôme, and R. Catherine. 2015. Cell wall metabolism in response to abiotic stress. Plants (Basel) 4 (1):112–66.
  • Kazemi, M. 2014. Effect of foliar application of humic acid and calcium chloride on tomato growth. Bulletin of Environment, Pharmacology and Life Sciences 3 (3):41–6.
  • Khenizy, S. A., A. Zaky, and M. E. Yasser. 2013. Effect of humic acid on vase life of gerbera flowers after cutting. Journal of Horticultural Science & Ornamental Plants 5 (2):127–36. ‏
  • Mackowiak, C. L., P. R. Grossl, and B. G. Bugbee. 2001. Beneficial effects of humic acid on micronutrient availability to wheat. Soil Science Society of America Journal. Soil Science Society of America 65 (6):1744–50. ‏ doi: 10.2136/sssaj2001.1744.
  • Memon, S. A., and K. Khetran. 2014. Effect of humic acid and calcium chloride on the growth and flower production of snapdragon (Antirrhinum majus). International Journal of Agricultural Technology 10 (6):1549–61.
  • Milani, M., E. M. Pradella, W. Heintze, G. Schafer, and R. Renar João Bender. 2019. The effects of supplemental nitrogen and calcium on the quality and postharvest life of cut gerbera. Ornamental Horticulture 25 (4): 224–234. doi: 10.1590/2447-536x.v25i4.2028.
  • Mosa, W., N. EL-Megeed, and L. Paszt. 2015. The effect of the foliar application of potassium, calcium, boron and humic acid on vegetative growth, fruit set, leaf mineral, yield and fruit quality of 'Anna' apple trees. American Journal of Experimental Agriculture 8 (4):224–34. doi: 10.9734/AJEA/2015/16716.
  • Nikbakht, A., M. Kafi, M. Babalar, Y. P. Xia, A. Luo, and N. Etemadi. 2008. Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition 31 (12):2155–67. doi: 10.1080/01904160802462819.
  • Patil, R. B., A. D. More, M. Kalyankarm, and S. Wadje. 2011. Effect of potassium humate on nutrients uptake of Glycine max, Phaseolus mungo and Triticum aestivum. Plant Sciences Feed 1 (10):174–8.
  • Pilbeam, D. J., P. S. Morely, A. V. Barker, and D. J. Pilbeam. 2007. Handbook of plant nutrition, calcium.‏ Boca Raton, FL: CRC Press.
  • Rios, J. J., S. O. Lochlainn, J. Devonshire, N. S. Graham, J. P. Hammond, G. J. King, P. J. White, S. Kurup, and M. R. Broadley. 2012. Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply. Annals of Botany 109 (6):1081–9. ‏ doi: 10.1093/aob/mcs029.
  • Roberts, D. M., and A. C. Harmon. 1992. Calcium modulated proteins: Targets of intracellular calcium signals in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 43 (1):375–414. doi: 10.1146/annurev.pp.43.060192.002111.
  • Santosa, S. J. 2014. Dekontaminasi Ion Logam dengan Biosorben Berbasis Asam Humat, Kitin dan Kitosan [Metal ion with biosorbent based on humic acid, chitin and chitosan]. Yogyakarta: UGM Press.
  • Sanchez-conde, M. P., and C. B. Ortega. 1968. Effect of humic acid on the development and the mineral nutrition of the pepper plant. In Control de la fertilizacion de las plantas cultivadas. 2nd Cologuio Environment Mediterranean Center for Edafologia Biology Aplications, 745–55. Sevilla, Spain: Cuarto.
  • Stromme, E., A. Selmer-Olsen, D. Savvas, and G. Gizas. 2002. Response of hydroponically grown gerbera to nutrient solution recycling and different nutrient cation ratios. Scientia Horticulturae 96 (1–4):267–80. doi: 10.1016/S0304-4238(02)00054-7.
  • Taiz, L., and E. Zeiger. 2009. Plant physiology. Oxford, UK: Oxford University Press, Sinauer Associates.
  • Tan, K. H., and V. Nopamornbodi. 1979. Effect of different levels of humic acids on nutrient content and growth of corn (Zea mays L.). Plant and Soil 51 (2):283–7. ‏ doi: 10.1007/BF02232891.
  • Urrutia, O., J. Erro, I. Guardado, S. San Francisco, M. Mandado, R. Baigorri, J. Claude Yvin, and J. Ma Garcia‐Mina. 2014. Physico‐chemical characterization of humic‐metal‐phosphate complexes and their potential application to the manufacture of new types of phosphate‐based fertilizers. Journal of Plant Nutrition and Soil Science 177 (2):128–36. ‏ doi: 10.1002/jpln.201200651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.