133
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Effects of supplementary nutrients (soil-nitrogen or foliar-iron) on switchgrass (Panicum virgatum L.) grown in Pb-contaminated soil

, &
Pages 2919-2930 | Received 12 Aug 2021, Accepted 03 Nov 2021, Published online: 26 Apr 2022

References

  • ACCLPP (Advisory Committee on Childhood Lead Poisoning Prevention, of the Centers for Disease Control and Prevention). 2012. Low level lead exposure harms children: A renewed call for primary prevention. Report to the CDCP, 1–54. Atlanta, GA: ACCLPP.
  • Adeleke, E., E. Dzantor, E. Kudjo, and A. Taheri. 2021. Inoculation and amendment strategies influence switchgrass establishment in degraded soil. Ecological Indicators 121:107068. doi: 10.1016/j.ecolind.2020.107068.
  • Aderholt, M., D. L. Vogelien, M. Koether, and S. Greipsson. 2017. Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid. Chemosphere 175:85–96. doi: 10.1016/j.chemosphere.2017.02.022.
  • Al-Sabbak, M., A. S. Sadik, O. Savabi, G. Savabi, S. Dastgiri, and M. Savabieasfahani. 2012. Metal contamination and the epidemic of congenital birth defects in Iraqi cities. Bulletin of Environmental Contamination and Toxicology 89 (5):937–44. doi: 10.1007/s00128-012-0817-2.
  • Ali, H., E. Khan, and M. A. Sajad. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91 (7):869–81. doi: 10.1016/j.chemosphere.2013.01.075.
  • Álvarez-Fernandez, A., P. Garcia-Lavina, J. Fidalgo, J. Abadia, and A. Abadia. 2004. Foliar fertilization to control iron chlorosis in pear (Pyrus communis L.) trees. Plant and Soil 263 (1):5–15. doi: 10.1023/B:PLSO.0000047717.97167.d4.
  • Bahulikar, R., I. Torres-Jerez, E. Worley, K. D. Craven, and M. K. Udvardi. 2014. Diversity of nitrogen-fixing bacteria associated with switchgrass in the native tallgrass prairie of northern Oklahoma. Applied and Environmental Microbiology 80 (18):5636–43. doi: 10.1128/AEM.02091-14.
  • Bakulski, K. M., L. S. Rozek, D. C. Dolinoy, H. L. Paulson, and H. Hu. 2012. Alzheimer's disease and environmental exposure to lead: The epidemiologic evidence and potential role of epigenetics. Current Alzheimer Research 9 (5):563–73. doi: 10.2174/156720512800617991.
  • Balsamo, R. A., W. J. Kelly, J. A. Satrio, M. N. Ruiz-Felix, M. Fetterman, R. Wynn, and K. Hagel. 2015. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils. International Journal of Phytoremediation 17 (1–6):448–55. doi: 10.1080/15226514.2014.922918.
  • Beavers, A., M. Koether, T. McElroy, and S. Greipsson. 2021. Effect of exogenous application of plant growth regulators (SNP and GA3) on phytoextraction by switchgrass (Panicum virgatum) grown in lead (Pb) contaminated soil. Sustainability 13 (19):10866. doi: 10.3390/su131910866.
  • Bellinger, D. C. 2008. Very low lead exposures and children's neurodevelopment. Current Opinion in Pediatrics 20:72–177.
  • Bellinger, D. C. 2013. Prenatal exposures to environmental chemicals and children's neurodevelopment: An update. Safety and Health at Work 4 (1):1–11.
  • Boyer, C. N., D. D. Tyler, R. K. Roberts, B. C. English, and J. A. Larson. 2012. Switchgrass yield response functions and profit-maximizing nitrogen rates on four landscapes in Tennessee. Agronomy Journal 104 (6):1579–88. doi: 10.2134/agronj2012.0179.
  • Boyer, C. N., R. K. Roberts, B. C. English, D. D. Tyler, J. A. Larson, and D. F. Mooney. 2013. Effects of soil type and landscape on yield and profit maximizing nitrogen rates for switchgrass production. Biomass Bioenergy.48:33–42. doi: 10.1016/j.biombioe.2012.11.004.
  • Cabral, L., C. Soares, A. J. Giachini, and J. O. Siqueira. 2015. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: Mechanisms and major benefits of their applications. World Journal of Microbiology & Biotechnology 31 (11):1655–64.
  • Canfield, R. L., C. R. Henderson, D. A. Cory-Slechta, C. Cox, T. A. Jusko, and B. P. Lanphear. 2003. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. The New England Journal of Medicine 348 (16):1517–26. doi: 10.1056/NEJMoa022848.
  • Chen, B. C., H. Y. Lai, and K. W. Juang. 2012. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicology and Environmental Safety 80:393–400. doi: 10.1016/j.ecoenv.2012.04.011.
  • Chen, H., J. C. Kwong, R. Copes, K. Tu, P. J. Villeneuve, A. van Donkelaar, P. Hystad, R. V. Martin, B. J. Murray, B. Jessiman, et al. 2017. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort study. The Lancet 389 (10070):718–26. doi: 10.1016/S0140-6736(16)32399-6.
  • Chrastný, V., M. Komárek, and T. Hájek. 2010. Lead contamination of an agricultural soil in the vicinity of a shooting range. Environmental Monitoring and Assessment 162 (1–4):37–46. doi: 10.1007/s10661-009-0774-3.
  • Clark, R. B. 2002. Differences among mycorrhizal fungi for mineral uptake per root length of switchgrass grown in acidic soil. Journal of Plant Nutrition 25 (8):1753–72. doi: 10.1081/PLN-120006056.
  • Connorton, J. M., J. Balk, and J. Rodriguez-Celma. 2017. Iron homeostasis in plants - A brief overview. Metallomics: Integrated Biometal Science 9 (7):813–23. doi: 10.1039/c7mt00136c.
  • Eiró, L. G., M. Ferreira, D. R. Frazao, W. Aragao, R. D. Souza-Rodrigues, N. Fagundes, L. C. Maia, and R. R. Lima. 2021. Lead exposure and its association with neurological damage: Systematic review and meta-analysis. Environmental Science and Pollution Research International 28 (28):37001–15. doi: 10.1007/s11356-021-13536-y.
  • Fathabadi, B., M. Dehghanifiroozabadi, J. Aaseth, G. Sharifzadeh, S. Nakhaee, A. Rajabpour-Sanati, A. Amirabadizadeh, and O. Mehrpour. 2018. Comparison of blood lead levels in patients with Alzheimer's disease and healthy people. American Journal of Alzheimer's Disease and Other Dementias 33 (8):541–7. doi: 10.1177/1533317518794032.
  • Fernandez, V., and G. Ebert. 2005. Foliar iron fertilization: A critical review. Journal of Plant Nutrition 28 (12):2113–24. doi: 10.1080/01904160500320954.
  • Filippelli, G. M., M. A. Laidlaw, J. C. Latimer, and R. Raftis. 2005. Urban lead poisoning and medical geology: An unfinished story. GSA Today 15 (1):4–11. doi: 10.1130/1052-5173(2005)015<4:ULPAMG > 2.0.CO;2.
  • Filippelli, G. M., and M. Laidlaw. 2010. The elephant in the playground: Confronting lead-contaminated soils as an important source of lead burdens to urban populations. Perspectives in Biology and Medicine 53:31–45.
  • Gleeson, A. M. 2007. Phytoextraction of lead from contaminated soil by Panicum virgatum L. (switchgrass) and associated growth responses. Master's Thesis, Queen's University, Ontario, Canada, 105p.
  • Gomes, H. 2012. Phytoremediation for bioenergy: Challenges and opportunities. Environmental Technology Reviews 1 (1):59–66. doi: 10.1080/09593330.2012.696715.
  • Greipsson, S., C. Tay, A. Whatley, and D. M. Deocampo. 2013. Sharp decline in lead contamination in topsoil away from a smelter and lead migration in ultisol. World Environment 3:102–7.
  • Greipsson, S., M. Koether, and M. T. McElroy. 2022a. Soil microbial communities affected by different levels of soil lead (Pb) contamination; implications for phytoremediation. Journal of Hazardous Materials (submitted).
  • Greipsson, S., M. Koether, and M. T. McElroy. 2022b. Effect of foliar application of DA-6 (diethyl aminoethyl hexanoate) and salicylic acid on uptake of Pb (lead) from contaminated soil by switchgrass. Communications in Soil Science and Plant Analysis (in press).
  • Gupta, D. K., H. G. Huang, and F. J. Corpas. 2013. Lead tolerance in plants: Strategies for phytoremediation. Environmental Science and Pollution Research International 20 (4):2150–61. doi: 10.1007/s11356-013-1485-4.
  • Hart, G., A. Gilly, M. Koether, T. McElroy, and S. Greipsson. 2022. Pytoextraction of lead (Pb) contaminated soil by switchgrass enhanced by BAP and NTA applications. Frontiers in Energy Research (submitted).
  • Hernández-Allica, J., J. M. Becerril, and C. Garbisu. 2008. Assessment of the phytoextraction potential of high biomass crop plants. Environmental Pollution (Barking, Essex: 1987) 152 (1):32–40. doi: 10.1016/j.envpol.2007.06.002.
  • Huang, P., P. Su, H. Chen, H. Huang, J. Tsai, H. Huang, and S. Wang. 2012. Childhood blood lead levels and intellectual development after ban of leaded gasoline in Taiwan: A 9-year prospective study. Environment International 40:88–96. doi: 10.1016/j.envint.2011.10.011.
  • Israel, G. D., J. O. Easton, and G. W. Knox. 1999. Adoption of landscape management practices by Florida residents. HortTechnology 9 (2):262–6. doi: 10.21273/HORTTECH.9.2.262.
  • Jabeen, R., A. Altaf, and M. Iqbal. 2009. Phytoremediation of heavy metals: Physiological and molecular mechanisms. The Botanical Review 75 (4):339–64. doi: 10.1007/s12229-009-9036-x.
  • Johnson, D., H. El-Mayas, D. Deocampo, and S. Greipsson. 2015. Induced phytoextraction of lead through chemical manipulation of switchgrass and corn; role of iron supplement. International Journal of Phytoremediation 17 (12):1192–203. doi: 10.1080/15226514.2015.1045134.
  • Johnson, A. W., M. Gutierrez, D. Gouzie, and M. L. McAliley. 2016. State of remediation and metal toxicity in the tri-state mining district, USA. Chemosphere 144:1132–41. doi: 10.1016/j.chemosphere.2015.09.080.
  • Jusko, T. A., C. R. Henderson Jr., B. P. Lanphear, D. A. Cory-Slechta, P. J. Parsons, and R. L. Canfield. 2008. Blood lead concentrations <10 μg/dL and child intelligence at 6 years of age. Environmental Health Perspectives 116:243–8.
  • Kämpfer, P., H. J. Busse, J. A. McInroy, J. Xu, and S. Glaeser. 2015. Flavobacterium Nitrogenifigens Sp. Nov., isolated from switchgrass (Panicum virgatum). International Journal of Systematic and Evolutionary Microbiology 65 (9):2803–9. doi: 10.1099/ijs.0.000330.
  • Kobae, Y., R. Tomioka, K. Tanoi, N. I. Kobayashi, Y. Ohmori, S. Nishida, and T. Fujiwara. 2014. Selective induction of putative iron transporters, OPT8a and OPT8b, in maize by mycorrhizal colonization. Soil Science & Plant Nutrition 60 (6):843–7. doi: 10.1080/00380768.2014.949854.
  • Laidlaw, M. A., and M. P. Taylor. 2011. Potential for childhood lead poisoning in the inner cities of Australia due to exposure to lead in soil dust. Environmental Pollution (Barking, Essex: 1987) 159 (1):1–9. doi: 10.1016/j.envpol.2010.08.020.
  • Lanphear, B. P., R. Hornung, J. Khoury, K. Yolton, P. Baghurst, D. C. Bellinger, R. L. Canfield, K. N. Dietrich, R. Bornschein, T. Greene, et al. 2005. Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis. Environmental Health Perspectives 113 (7):894–9. doi: 10.1289/ehp.7688.
  • Lemus, R., D. Parris, and O. Abaye. 2008. Nitrogen-use dynamics in switchgrass grown for biomass. BioEnergy Research 1 (2):153–62. doi: 10.1007/s12155-008-9014-x.
  • Leung, H., Z. Wang, Z. Ye, K. Yung, X. Peng, and K. Cheung. 2013. Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: A review. Pedosphere 23 (5):549–63. doi: 10.1016/S1002-0160(13)60049-1.
  • Lešková, A., R. F. H. Giehl, A. Hartmann, A. Fargašová, and N. von Wirén. 2017. Heavy metals induce iron deficiency responses at different hierarchic and regulatory levels. Plant Physiology 174 (3):1648–68. doi: 10.1104/pp.16.01916.
  • Li, J., H.-L. Cao, W.-B. Jiao, Q. Wang, M. Wei, I. Cantone, J. Lü, and A. Abate. 2020. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nature Communications 11 (1):310. doi: 10.1038/s41467-019-13910-y.
  • McGrath, S. P., and F. J. Zhao. 2003. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology 14 (3):277–82. doi: 10.1016/S0958-1669(03)00060-0.
  • McLaughlin, S. B., and L. A. Kszos. 2005. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy 28 (6):515–35. doi: 10.1016/j.biombioe.2004.05.006.
  • Meers, F., and F. Tack. 2004. The potential of foliar treatments for enhanced phytoextraction of heavy metals from contaminated soil. Remediation Journal 14 (4):111–23. doi: 10.1002/rem.20025.
  • Mielke, H. W., C. R. Gonzales, E. T. Powell, and P. W. Mielke. 2016. Spatiotemporal dynamic transformations of soil lead and children's blood lead ten years after Hurricane Katrina: New grounds for primary prevention. Environment International 94:567–75. doi: 10.1016/j.envint.2016.06.017.
  • Monti, A., and W. Zegada-Lizarazu. 2016. Sixteen-year biomass yield and soil carbon storage of giant reed (Arundo donax L.) grown under variable nitrogen fertilization rates. BioEnergy Research 9 (1):248–56. doi: 10.1007/s12155-015-9685-z.
  • Muir, J. P., M. A. Sanderson, W. R. Ocumpaugh, R. M. Jones, and R. L. Reed. 2001. Biomass production of “Alamo” switchgrass in response to nitrogen, phosphorus, and row spacing. Agronomy Journal 93 (4):896–901. doi: 10.2134/agronj2001.934896x.
  • Nacke, H., A. Gonçalves, D. Schwantes, I. Nava, L. Strey, and G. Coelho. 2013. Availability of heavy metals (Cd, Pb, and Cr) in agriculture from commercial fertilizers. Archives of Environmental Contamination and Toxicology 64 (4):537–44. doi: 10.1007/s00244-012-9867-z.
  • Nigg, J. T., M. Nikolas, G. Knottnerus, K. Cavanagh, and K. Friderici. 2010. Confirmation and extension of association of blood lead with attention-deficit/hyperactivity disorder (ADHD) and ADHD symptom domains at population-typical exposure levels. Journal of Child Psychology and Psychiatry, and Allied Disciplines 51 (1):58–65. doi: 10.1111/j.1469-7610.2009.02135.x.
  • Nsanganwimana, F., C. Waterlot, B. Louvel, B. Pourrut, and F. Douay. 2016. Metal, nutrient and biomass accumulation during the growing cycle of Miscanthus established on metal contaminated soils. Journal of Plant Nutrition and Soil Science 179 (2):257–69. doi: 10.1002/jpln.201500163.
  • Oh, K., T. Li, H. Cheng, X. Hu, C. He, L. Yan, and Y. Shinichi. 2013. Development of profitable phytoremediation of contaminated soils with biofuel crops. Journal of Environmental Protection 04 (04):58–64. doi: 10.4236/jep.2013.44A008.
  • Parrish, D. J., and J. H. Fike. 2005. The biology and agronomy of switchgrass for biofuels. Critical Reviews in Plant Sciences 24 (5–6):423–59. doi: 10.1080/07352680500316433.
  • Paulson, J. A., and M. J. Brown. 2019. The CDC blood lead reference value for children: Time for a change. Environmental Health 18 (1):16. doi: 10.1186/s12940-019-0457-7.
  • Pedroso, G. M., R. B. Hutmacher, D. Putnam, S. D. Wright, J. Six, C. Kessel, and B. A. Linquist. 2013. Yield and nitrogen management of irrigated switchgrass systems in diverse ecoregions. Agronomy Journal 105 (2):311–20. doi: 10.2134/agronj2012.0354.
  • Perry, V. R., E. J. Krogstad, H. El-Mayas, and S. Greipsson. 2012. Chemically enhanced phytoextraction of lead-contaminated soils. International Journal of Phytoremediation 14 (7):703–13. doi: 10.1080/15226514.2011.619236.
  • Pestana, M., P. J. Correia, A. de Varennes, J. Abadía, and E. A. Faria. 2001. Effectiveness of different foliar iron applications to control iron chlorosis in orange trees grown on a calcareous soil. Journal of Plant Nutrition 24 (4–5):613–22. doi: 10.1081/PLN-100103656.
  • Pilon-Smits, E. 2005. Phytoremediation. Annual Review of Plant Biology 56:15–39. doi: 10.1146/annurev.arplant.56.032604.144214.
  • Pogrzeba, M., S. Rusinowski, and J. Krzyżak. 2018. Macroelements and heavy metals content in energy crops cultivated on contaminated soil under different fertilization-case studies on autumn harvest. Environmental Science and Pollution Research International 25 (12):12096–106. doi: 10.1007/s11356-018-1490-8.
  • Qin, Z., Q. Zhuang, and X. Cai. 2015. Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An ecosystem modeling perspective. GCB Bioenergy 7 (6):1211–21. doi: 10.1111/gcbb.1221.
  • Sanderson, M., and A. Paul. 2008. Perennial forages as second generation bioenergy crops. International Journal of Molecular Sciences 9 (5):768–88. doi: 10.3390/ijms9050768.
  • Sadeghpour, A., L. E. Gorlitsky, M. Hashemi, S. A. Weis, and S. J. Herbert. 2014. Response of switchgrass yield and quality to harvest season and nitrogen fertilizer. Agronomy Journal 106 (1):290–6. doi: 10.2134/agronj2013.0183.
  • Sawalha, A., R. Wright, D. Bellinger, C. Amarasiriwardean, A. Abu-Taha, and W. Sweileh. 2013. Blood lead level among Palestinian schoolchildren: A pilot study. Eastern Mediterranean Health Journal 19 (02):151–5. doi: 10.26719/2013.19.2.151.
  • Schaffer, B., J. H. Crane, C. Li, Y. Li, and E. A. Evans. 2011. Re-greening of lychee (Litchi chinensis Sonn.) leaves with foliar applications of iron sulfate and weak acids. Journal of Plant Nutrition 34 (9):1341–59. doi: 10.1080/01904167.2011.580820.
  • Schooley, T. N., M. J. Weaver, D. Mullins, and M. J. Eick. 2009. The history of lead arsenate use in apple production: Comparison of its impact in Virginia with other States. Journal of Pesticide Safety Education 10:22–53.
  • Shen, Z. G., X. D. Li, C. C. Wang, H. M. Chen, and H. Chua. 2002. Lead phytoextraction from contaminated soil with high-biomass plant species. Journal of Environmental Quality 31 (6):1893–900. doi: 10.2134/jeq2002.1893.
  • Sheoran, V., A. S. Sheoran, and P. Poonia. 2016. Factors affecting phytoextraction: A review. Pedosphere 26 (2):148–66. doi: 10.1016/S1002-0160(15)60032-7.
  • Smith, L. L., D. J. Allen, and J. N. Barney. 2015. Yield potential and stand establishment for 20 candidate bioenergy feedstocks. Biomass and Bioenergy 73:145–54. doi: 10.1016/j.biombioe.2014.12.015.
  • Tamayo, E., T. Gómez-Gallego, C. Azcón-Aguilar, and N. Ferrol. 2014. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Frontiers in Plant Science 5:547. doi: 10.3389/fpls.2014.00547.
  • Tangahu, B. V., S. R. Sheikh Abdullah, H. Basri, M. Idris, N. Anuar, M. Mukhlisin, and H. J. Bart. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering 2011:1–31. doi: 10.1155/2011/939161.
  • Téllez-Rojo, M. M., D. C. Bellinger, C. Arroyo-Quiroz, H. Lamadrid-Figueroa, A. Mercado-García, L. Schnaas-Arrieta, R. O. Wright, M. Hernández-Avila, and H. Hu. 2006. Longitudinal associations between blood lead concentrations lower than 10 micro g/dL and neurobehavioral development in environmentally exposed children in Mexico City. Pediatrics 118 (2):e323–230. doi: 10.1542/peds.2005-3123.
  • Tripathi, D. K., S. Singh, S. Gaur, S. Singh, V. Yadav, S. Liu, V. P. Singh, S. Sharma, P. Srivastava, S. M. Prasad, et al. 2018. Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Frontiers in Environmental Science 5 (86). doi: 10.3389/fenvs.2017.00086.
  • Van Ginneken, L., E. Meers, R. Guisson, A. Ruttens, K. Elst, F. M. Tack, J. Vangronsveld, L. Diels, and W. Dejonghe. 2007. Phytoremediation for heavy metal‐contaminated soils combined with bioenergy production. Journal of Environmental Engineering and Landscape Management 15 (4):227–36. doi: 10.3846/16486897.2007.9636935.
  • Vert, G., N. Grotz, F. Dédaldéchamp, F. Gaymard, M. L. Guerinot, J. F. Briat, and C. Curie. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell 14 (6):1223–33. doi: 10.1105/tpc.001388.
  • Viehweger, K. 2014. How plants cope with heavy metals. Botanical Studies 55 (1):35. doi: 10.1186/1999-3110-55-35.
  • Wang, F. 2017. Occurrence of arbuscular mycorrhizal fungi in mining impacted sites and their contribution to ecological restoration: Mechanisms and application. Critical Reviews in Environmental Science and Technology 47 (20):1901–57. doi: 10.1080/10643389.2017.1400853.
  • Wu, J., M. R. Basha, B. Brock, D. P. Cox, F. Cardozo-Pelaez, C. A. McPherson, J. Harry, D. C. Rice, B. Maloney, D. Chen, et al. 2008. Alzheimer's disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): Evidence for a developmental origin and environmental link for AD. The Journal of Neuroscience 28 (1):3–9. doi: 10.1523/JNEUROSCI.4405-07.2008.
  • Zahran, S., M. A. Laidlaw, S. P. McElmurry, G. M. Filippelli, and M. Taylor. 2013. Linking source and effect: Resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environmental Science & Technology 47 (6):2839–45. doi: 10.1021/es303854c.
  • Zhu, Y., X. Fan, X. Hou, J. Wu, and T. Wang. 2014. Effect of different levels of nitrogen deficiency on switchgrass seedling growth. The Crop Journal 2 (4):223–34. doi: 10.1016/j.cj.2014.04.005.
  • Zhuang, P., B. Zou, N. Li, and Z. Li. 2009. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: Implication for human health. Environmental Geochemistry and Health 31 (6):707–15. doi: 10.1007/s10653-009-9248-3.
  • Zhuang, Q., Z. Qin, and M. Chen. 2013. Biofuel, land and water: Maize, switchgrass or Miscanthus? Environmental Research Letters 8 (1):015020. doi: 10.1088/1748-9326/8/1/015020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.