337
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Iron chlorosis in fruit stone trees with emphasis on chlorosis correction mechanisms in orchards: a review

, ORCID Icon & ORCID Icon
Pages 782-800 | Received 05 Aug 2021, Accepted 01 Feb 2022, Published online: 14 Jun 2022

References

  • Abadía, J., S. Vázquez, R. Rellán-Álvarez, H. El-Jendoubi, A. Abadía, A. Álvarez-Fernández, and A. F. López-Millán. 2011. Towards a knowledge-based correction of iron chlorosis. Plant Physiology and Biochemistry 49 (5):471–82. doi: 10.1016/j.plaphy.2011.01.026.
  • Aktaş, M., and F. Van Egmond. 1979. Patrones de frutales de hueso tolerantes a suelos calizos. Plant and Soil 51 (2):257–74. doi: 10.1007/BF02232888.
  • Albacete, A., C. Martínez-Andújar, A. Martínez-Pérez, A. J. Thompson, I. C. Dodd, and F. Pérez-Alfocea. 2015. Unravelling rootstock × scion interactions to improve food security. Journal of Experimental Botany 66 (8):2211–26.
  • Alcántara, E., F. J. Romera, M. Canete, and M. D. De la Guardia. 2000. Effects of bicarbonate and iron supply on Fe (III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock “Nemaguard. Journal of Plant Nutrition 23 (11-12):1607–17. doi: 10.1080/01904160009382127.
  • Almaliotis, D. D. A. G. Manganaris, A. D. Simonis, and S. B. Bladenopoulou. 1995. Rootstock effect on yield and mineral nutrition of ‘Maycrest’ peach tress under conditions of lime-induced chlorosis. In: Abadía J (ed) Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, pp. 301–6.
  • Alva, A. K. 1992. Solubility and iron release characteristics of iron chelates and sludge products. Journal of Plant Nutrition 15 (10):1939–54. doi: 10.1080/01904169209364449.
  • Álvarez-Fernández, A., S. Garcı́a-Marco, and J. J. Lucena. 2005. Evaluation of synthetic iron (III)-chelates (EDDHA/Fe3+, EDDHMA/Fe3+ and the novel EDDHSA/Fe3+) to correct iron chlorosis. European Journal of Agronomy 22 (2):119–30. doi: 10.1016/j.eja.2004.02.001.
  • Álvarez-Fernández, A., J. C. Melgar, J. Abadía, and A. Abadía. 2011. Effects of moderate and severe iron deficiency chlorosis on fruit yield, appearance and composition in pear (Pyrus communis L.) and peach (Prunus persica (L.) Batsch). Environmental and Experimental Botany 71 (2):280–6. doi: 10.1016/j.envexpbot.2010.12.012.
  • Álvarez-Fernández, A., J. C. Melgar, J. Abadía, and A. Abadía. 2011. Effects of moderate and severe iron deficiency chlorosis on fruit yield, appearance and composition in pear (Pyrus communis L.) and peach (Prunus persica L. Batsch. Environmental and Experimental Botany 71 (2):280–6. ) doi: 10.1016/j.envexpbot.2010.12.012.
  • Andreu, J. S. 1. Jorde, and M. luerez. 1991. Reactions of Fe-EDTA and Pe-EDDHA applied to calcareous soils. In Iron nutrition and interactions in plants, eds. Chen Y. and Y. Hadar 57–62.Dordrecht, Netherlands: Kluwer Academic Publishers..
  • Arias-Baldrich, C., N. Bosch, D. Begines, A. B. Feria, J. A. Monreal, and S. García-Mauriño. 2015. Proline synthesis in barley under iron deficiency and salinity. Journal of Plant Physiology 183:121–9.
  • Astolfi, S., S. Zuchi, C. Passera, and S. Cesco. 2003. Does the sulfur assimilation pathway play a role in the response to Fe deficiency in maize (Zea mays L.) plants? Journal of Plant Nutrition 26 (10–11):2111–21. doi: 10.1081/PLN-120024268.
  • Audubert, A., Edin, M., Garcin, A. 1994. Portinnesti per l’albicocco. Frutticoltura 9, 63–66.
  • Avermaete, U., 1999. Global Horticultural impact: Fruits and vegetables in developed countries. WCHR-World Conference on Horticultural Research 495, 39–67.
  • Azad, M. K., J. Nasiri, and H. Abdollahi. 2013. Genetic diversity of selected Iranian quinces using SSRs from apples and pears. Biochemical Genetics 51 (5–6):426–42.
  • Bar-Akiva, A., M. Kaplan, and R. Lavon. 1967. Use of a biochemical indicator for diagnosing micronutrient deficiencies of grapefruit trees under field conditions. Agrochimica 11 (3):283.
  • Barton, L. L, and J. Abadía. 2007. Iron nutrition in plants and rhizospheric microorganisms. Dordrecht: Springer. https://doi.org/10.1007/1-4020-4743-6
  • BAŞAR, H. 2000. Factors affecting iron chlorosis observed in peach trees in the Bursa region. Turkish Journal of Agriculture and Forestry 24 (2):237–46.
  • Black, B. T. Maughan, T. Beddes, and G. Reighard. 2020. Selecting rootstocks for Utah Peach Orchards.
  • Brown, J. C. 1961. Iron chlorosis in plants. Advances in Agronomy 13:329–69.
  • Brown, J. C., and V. D. Jolley. 1989. Plant metabolic responses to iron-deficiency stress. BioScience 39 (8):546–51. doi: 10.2307/1310977.
  • Brown, J. C., and W. Jones. 1976. A technique to determine iron deficiency in plant. Soil Science Society of America Journal 40 (3):398–405. doi: 10.2136/sssaj1976.03615995004000030027x.
  • Byrne, D. H., T. A. Bacon, and J. N. A. Egilla. 1990. Patrones de frutales de hueso tolerantes a suelos calizos. ITEA vol. extra 9:117–33.
  • Castle, W. S. 2010. A career perspective on citrus rootstocks, their development, and commercialization. HortScience 45 (1):11–5. doi: 10.21273/HORTSCI.45.1.11.
  • Castle, W. S., J. Nunnallee, and J. A. Manthey. 2009. Screening citrus rootstocks and related selections in soil and solution culture for tolerance to low-iron stress. HortScience 44 (3):638–45. doi: 10.21273/HORTSCI.44.3.638.
  • Chakraborty, B., K. Chakraborty, and D. Bhaduri. 2016. An insight of iron chlorosis in horticultural crops: Physiological and molecular basis, and possible management strategies. Plant Stress Tolerance Physiological & Molecular Strategies 239-270.
  • Chaney, R. L., P. F. Bell, and B. Couloumbe. 1989. Screening strategies for improved nutrient uptake and use by plants. HortScience 24 (4):565–72.
  • Chang, Y. C., J. F. Ma, and H. Matsumoto. 1998. Mechanisms of Al‐induced iron chlorosis in wheat (Triticum aestivum). Al‐inhibited biosynthesis and secretion of phytosiderophore. Physiologia Plantarum 102 (1):9–15.
  • Chen, Y., and P. Barak. 1982. Iron nutrition of plants in calcareous soils. Advances in Agronomy 35:217–40.
  • Chin, S. W., J. Shaw, R. Haberle, J. Wen, and D. Potter. 2014. Diversification of almonds, peaches, plums and cherries–molecular systematics and biogeographic history of Prunus (Rosaceae). Molecular Phylogenetics and Evolution 76:34–48.
  • Christ, R. A. 1974. Iron requirement and iron uptake from various iron compounds by different plant species. Plant Physiology 54 (4):582–5.
  • Cinelli, F, and F. Loreti. 2002. Evaluation of some plum rootstocks in relation to lime-induced chlorosis by hydroponic culture. In I International Symposium on Rootstocks for Deciduous Fruit Tree Species. Acta Horticulture 658: 421–7. doi: 10.17660/ActaHortic.2004.658.62.
  • Cinelli, F., R. Viti, and F. Loreti. 1996. Risultati preliminari sulla tolleranza la calcare di nuovi portinnesti ibribi pesco x mandorlo. Frutticultura 7 (8):29–32.
  • Connorton, J. M., J. Balk, and J. Rodríguez-Celma. 2017. Iron homeostasis in plants–a brief overview. Metallomics : Integrated Biometal Science 9 (7):813–23.
  • Coulombe, B. A., R. L. Chaney, and W. J. Wiebold. 1984. Bicarbonate directly induces iron chlorosis in susceptible soybean cultivars. Soil Science Society of America Journal 48 (6):1297–301. doi: 10.2136/sssaj1984.03615995004800060019x.
  • CTIFL. 1990. Le Cerisier. Centre Technique interprofessionnel des fruits et legumes, Paris, France, 361 p.
  • Silveira, V. C. d., A. P. d. Oliveira, R. A. Sperotto, L. S. Espindola, L. Amaral, J. F. Dias, J. B. d. Cunha, and J. P. Fett. 2007. Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Brazilian Journal of Plant Physiology 19 (2):127–39. doi: 10.1590/S1677-04202007000200005.
  • Ding, W. L., P. L. Clode, and H. Lambers. 2020. Effects of pH and bicarbonate on the nutrient status and growth of three Lupinus species. Plant and Soil 447 (1–2):9–28. doi: 10.1007/s11104-019-03980-8.
  • Donnini, S., A. Castagna, A. Ranieri, and G. Zocchi. 2009. Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. Journal of Plant Physiology 166 (11):1181–93.
  • Eckhard, T. U., A. Mas Marques, and T. J. Buckhout. 2001. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Molecular Biology 45 (4):437–48.
  • Eichert, T., and E. Goldbach. 2008. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces – further evidence for a stomatal pathway. Physiologia Plantarum 132 (4):491–502. doi: 10.1111/j.1399-3054.2007.01023.x.
  • Fageria, N. K., N. A. Slaton, and V. C. Baligar. 2003. Nutrient management for improving lowland rice productivity and sustainability. Advances in Agronomy 80 (1):63–152.
  • FAOSTAT. 2020. Crops production in 2018. Accessed October 24, 2020. http://faostat.fao.org/.
  • Fernández, V., Ebert, G., Winkelmann, G. 2005. The use of microbial siderophores for foliar iron application studies. Plant and Soil 272: 245–252. doi: 10.1007/s11104-004-5212-2.
  • Fernández, V., Del Río, V., Abadía, J., & Abadía, A. 2006. Foliar iron fertilization of peach (Prunus persica (L.) Batsch): Effects of iron compounds, surfactants and other adjuvants. Plant and Soil, 289(1-2), 239–252. doi: 10.1007/s11104-004-5212-2.
  • Fernandez-Escobar, R., D. Barranco, and M. Benlloch. 1993. Overcoming iron chlorosis in olive and peach trees using low pressure trunk Injection method. Horticultural Science 28:192–4.
  • Fichtner, E, and R. Elkins. 2012. Lime-induced Iron Chlorosis: A nutritional challenge in the culture of several subtropical perennial crops in California. University of California.
  • Foster, T. M., P. A. McAtee, C. N. Waite, H. L. Boldingh, and T. K. McGhie. 2017. Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism. Horticulture Research 4 (1):1–13. doi: 10.1038/hortres.2017.9.
  • Franke, W. 1986. The basis of foliar absorption of fertilizers with special regard to the mechanisms. In: Foliar Fertilization. (Alexander, A., Ed.). Martinus Nijhoff Publishers, Dordrecht, The Netherlands. 17–25.
  • Gad, N., and A. M. Zaghloul. 2007. Minimizing the health hazard of lettuce cultivated in some heavy metals affected soils. Australian Journal of Basic and Applied Sciences 1 (2):79–86.
  • Gonzalo, M. J., M. A. Moreno, and Y. Gogorcena. 2011. Physiological responses and differential gene expression in Prunus rootstocks under iron deficiency conditions. Journal of Plant Physiology 168 (9):887–93. doi: 10.1016/j.jplph.2010.11.017.
  • Gris, E. 1843. Mémoir relatif à l’action des composés solubles ferrugineux sur la végétation. Compt. Rend. Acad. Sci.(Paris) 17 (679):1843.
  • Hansen, N. C., V. D. Jolley, S. L. Naeve, and R. J. Goos. 2004. Iron deficiency of soybean in the North Central US and associated soil properties. Soil Science and Plant Nutrition 50 (7):983–7. doi: 10.1080/00380768.2004.10408564.
  • Hansen, N. C. B. G. Hopkins, J. W. Ellsworth, and V. D. Jolley. 2006. Iron nutrition in field crops. In: Iron Nutrition in Plants and Rhizospheric Microorganisms (Barton LL, Abadıa J, eds.). 23–59. Springer. Dordrecht, The Netherlands.
  • Hauter, R., and K. Mengel. 1988. Measurement of pH at the root surface of red clover (Trifolium pratense) grown in soils differing in proton buffer capacity. Biology and Fertility of Soils 5 (4):295–8. doi: 10.1007/BF00262134.
  • Horneck, D. A. J. M. Hart, R. Stevens, S. Petrie, and J. E. Altland. 2004. Acidifying soil for crop production west of the cascade mountains.
  • Hughes, D. F., V. D. Jolley, and J. C. Brown. 1992. Roles for potassium in the iron-stress response mechanisms of strategy I and strategy II plants. Journal of Plant Nutrition 15 (10):1821–39. doi: 10.1080/01904169209364442.
  • Hummer, K. E, and J. Janick. 2009. Rosaceae: Taxonomy, economic importance, genomics. In Genetics and genomics of Rosaceae, 1–17. Springer, New York, NY.
  • Iglesias, I., J. Carbó, J. Bonany, X. Garanto, and M. Peris. 2018. Patrones de melocotonero: Situación actual, innovación, comportamiento agronómico y perspectivas de futuro. Revista Frutiiultura 61:6–42.
  • Ikinci, A., I. Bolat, S. Ercisli, and A. Esitken. 2016. Response of Yield, Growth and Iron Deficiency Chlorosis of'Santa Maria'Pear Trees on Four Rootstocks. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44 (2):563–7. doi: 10.15835/nbha44210501.
  • Jacobson, L. 1945. Iron in the leaves and chloroplasts of some plants in relation to their chlorophyll content. Plant Physiology 20 (2):233–45. doi: 10.1104/pp.20.2.233.
  • Jaeger, B., H. Goldbach, and K. Sommer. 2000. Release from lime induced iron chlorosis by Cultan in fruit trees and its characterisation by analysis. Acta Horticulturae 531 (531):107–13. doi: 10.17660/ActaHortic.2000.531.15.
  • Jeong, J., and M. L. Guerinot. 2009. Homing in on iron homeostasis in plants. Trends in Plant Science. 14 (5):280–5. doi: 10.1016/j.tplants.2009.02.006.
  • Jeong, J., and E. L. Connolly. 2009. Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases. Plant Science 176 (6):709–14. doi: 10.1016/j.plantsci.2009.02.011.
  • Jiménez, S., N. Ollat, C. Deborde, M. Maucourt, R. Rellán-Álvarez, M. Á. Moreno, and Y. Gogorcena. 2011. Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis. Journal of Plant Physiology 168 (5):415–23.
  • Jiménez, S., J. Pinochet, A. Abadia, M. Á. Moreno, and Y. Gogorcena. 2008. Tolerance response to iron chlorosis of Prunus selections as rootstocks. HortScience 43 (2):304–9. doi: 10.21273/HORTSCI.43.2.304.
  • Joshi, V. K. S. Sharma, and V. S. Rana. 2012. Wine and brandy. In: Joshi, V.K., Singh, R.S. (Eds.), Food Biotechnology: Principles and Practices. IK International Publishing House, New Delhi, 471–94.
  • Kacar, B. 1972. Bitki ve Toprag˘ın Kimyasal Analizleri. II. Bitki Analizleri; A.Ü. Ziraat Fakültesi Yayınları: Ankara, Turkey.
  • Karimi, H. R., and F. E. Tari. 2017. Effects of NaHCO3 on photosynthetic characteristics, and iron and sodium transfer in pomegranate. Journal of Plant Nutrition 40 (1):11–22. doi: 10.1080/01904167.2016.1161770.
  • Kassa, A. 2015. Lime-induced iron chlorosis in fruit trees. Journal of Chemical Sciences 5:293–302.
  • Kim, S. A., and M. L. Guerinot. 2007. Mining iron: iron uptake and transport in plants. FEBS Letters 581 (12):2273–80.
  • Kobayashi, T., R. N. Itai, T. Senoura, T. Oikawa, Y. Ishimaru, M. Ueda, H. Nakanishi, and N. K. Nishizawa. 2016. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots. Plant Molecular Biology 91 (4-5):533–47. doi: 10.1007/s11103-016-0486-3.
  • Kolesch, H., W. Höfner, and K. Schaller. 1987. Effect of bicarbonate and phosphate on iron chlorosis of grape vines with special regard to the susceptibility of two rootstocks. Part II: Pot experiments. Journal of Plant Nutrition 10 (2):231–49. doi: 10.1080/01904168709363568.
  • Kolesch, H., M. Oktay, and W. Höfner. 1984. Effect of iron chlorosis-inducing factors on the pH of the cytoplasm of sunflower (Helianthus annuus). Plant and Soil 82 (2):215–21. doi: 10.1007/BF02220248.
  • Korcak, R. F. 1987. Iron deficiency chlorosis. Horticultural Reviews 9:133–86.
  • Kosegarten, H., and G. Englisch. 1994. Effect of various nitrogen forms on the pH in leaf apoplast and on iron chlorosis of Glycine max L. Zeitschrift Für Pflanzenernährung Und Bodenkunde 157 (6):401–5. doi: 10.1002/jpln.19941570602.
  • Kosegarten, H., and H. W. Koyro. 2001. Apoplastic accumulation of iron in the epidermis of maize (Zea mays) roots grown in calcareous soil. Physiologia Plantarum 113 (4):515–22. doi: 10.1034/j.1399-3054.2001.1130410.x.
  • Kosegarten, H., F. Grolig, A. Esch, K. H. Glüsenkamp, and K. Mengel. 1999. Effects of NH4+, NO3− and HCO3− on apoplast pH in the outer cortex of root zones of maize, as measured by the fluorescence ratio of fluorescein boronic acid. Planta 209 (4):444–52. doi: 10.1007/s004250050747.
  • Kosegarten, H., B. Hoffmann, and K. Mengel. 2001. The paramount influence of nitrate in increasing apoplastic pH of young sunflower leaves to induce Fe deficiency chlorosis, and the re‐greening effect brought about by acidic foliar sprays. Journal of Plant Nutrition and Soil Science 164 (2):155–63. doi: 10.1002/1522-2624(200104)164:2<155::AID-JPLN155>3.0.CO;2-F.
  • Kosegarten, H. A. D. Rombolà, G. Sorrenti, M. Tagliavini, and B. Marangoni. 2004. Nitrate nutrition inducing Fe deficiency chlorosis in peach (Prunus persica L.). In Abstracts of the XII International Symposium on Iron Nutrition and Interactions in Plants, Tokyo, Japan, 130.
  • Kosegarten, H., G. H. Wilson, and A. Esch. 1998. The effect of nitrate nutrition on iron chlorosis and leaf growth in sunflower (Helianthus annuus L.). European Journal of Agronomy 8 (3-4):283–92. doi: 10.1016/S1161-0301(98)00021-5.
  • Ksouri, R., S. M'rah, M. Gharsalli, and M. Lachaâl. 2006. Biochemical responses to true and bicarbonate-induced iron deficiency in grapevine genotypes. Journal of Plant Nutrition 29 (2):305–15. doi: 10.1080/01904160500476897.
  • Lavon, R., and E. E. Goldschmidt. 1999. Enzymatic methods for detection of mineral element deficiencies in citrus leaves: A mini‐review. Journal of Plant Nutrition 22 (1):139–50. doi: 10.1080/01904169909365613.
  • Leece, D. R. 1975. Diagnostic leaf analysis for stone fruit. 4. Plum. Australian Journal of Experimental Agriculture 15 (72):112–7. doi: 10.1071/EA9750112.
  • Leece, D. R. 1975. Diagnostic leaf analysis for stone fruit. 5. Sweet cherry. Australian Journal of Experimental Agriculture 15 (72):118–22. doi: 10.1071/EA9750118.
  • Leece, D. R., and B. den Ende. 1975. Diagnostic leaf analysis for stone fruit. 6. Apricot. Australian Journal of Experimental Agriculture 15 (72):123–8. doi: 10.1071/EA9750123.
  • Leece, D. R., F. W. Cradock, and 0G. Carter. 1971. Development of leaf nutrient concentration standards for peach trees in New South Wales. Journal of Horticultural Science 46 (2):163–75. doi: 10.1080/00221589.1971.11514395.
  • Legaz, F. 1992. Leaf spray and soil application of Fe-chelates to Navelina orange trees. In Proc. Int. Soc. Citriculture 2:613–7. (
  • Li, B., O. W. Liew, and A. K. Asundi. 2006. Pre-visual detection of iron and phosphorus deficiency by transformed reflectance spectra. Journal of Photochemistry and Photobiology B: Biology 85 (2):131–9. doi: 10.1016/j.jphotobiol.2006.06.005.
  • Lindsay, W. L. 1974. Role of chelation in micronutrient availability. The Plant Root and Its Environment
  • Lindsay, W. L., and D. C. Martens. 1990. Testing soils for copper, iron, manganese, and zinc. Soil Testing and Plant Analysis 3:229–64.
  • Lockard, R. G., and G. W. Schneider. 1981. Stock and scion growth relationships and the dwarfing mechanism in apple. Horticultural Reviews 3:315–75.
  • Loeppert, R. H. 1986. Reactions of iron and carbonates in calcareous soils. Journal of Plant Nutrition 9 (3):195–214. doi: 10.1080/01904168609363437.
  • Loeppert, R. H., S. C. Geiger, R. C. Hartwig, and D. R. Morris. 1988. A comparison of indigenous soil factors influencing the Fe‐deficiency chlorosis of sorghum and soybean in calcareous soils. Journal of Plant Nutrition 11 (6-11):1481–92. doi: 10.1080/01904168809363904.
  • Lopez-Millan, A. F., D. R. Ellis, and M. A. Grusak. 2004. Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Molecular Biology 54 (4):583–96.
  • López-Millán, A. F., M. A. Grusak, A. Abadía, and J. Abadía. 2013. Iron deficiency in plants: An insight from proteomic approaches. Frontiers in Plant Science 4:254.
  • Loreti, F. 1994. Attuali conoscenze sui principali portinnesti degli alberi da frutto. Frutticoltura 9:9–62.
  • Lucena, J. J. 2003. Fe chelates for remediation of Fe chlorosis in strategy I plants. Journal of Plant Nutrition 26 (10-11):1969–84. doi: 10.1081/PLN-120024257.
  • Lucena, J. J. 2006. Synthetic iron chelates to correct iron deficiency in plants. In Iron nutrition in plants and rhizospheric microorganisms (103–28. Springer, Dordrecht.
  • Lucena, J. J., M. Manzanares, and A. Gárate. 1992a. Comparative study of the efficacy of commercial Fe chelates using a new test. Journal of Plant Nutrition 15 (10):1995–2006. doi: 10.1080/01904169209364453.
  • Lucena, J. J., M. Manzanares, and A. Garate. 1992b. A test to evaluate the efficacy of commercial Fe‐chelates. Journal of Plant Nutrition 15 (10):1553–66. doi: 10.1080/01904169209364421.
  • Ma, J. F., T. Shinada, C. Matsuda, and K. Nomoto. 1995. Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. The Journal of Biological Chemistry 270 (28):16549–54.
  • Malekzadeh Shamsabad, M. R., H. R. Roosta, and M. Esmaeilizadeh. 2021. Responses of seven strawberry cultivars to alkalinity stress under soilless culture system. Journal of Plant Nutrition 44 (2):166–80. doi: 10.1080/01904167.2020.1822401.
  • Marschner, H. 1995. Functions of mineral nutrients: Micronutrients: Iron. In Mineral Nutrition of Higher plants 2nd ed. 313–23. London, Academic Press.
  • Marsh, H. V., Jr, H. J. Evans, and G. Matrone. 1963. Investigations of the role of iron in chlorophyll metabolism I. Effect of iron deficiency on chlorophyll and heme content and on the activities of certain enzymes in leaves. Plant Physiology 38 (6):632–8. doi: 10.1104/pp.38.6.632.
  • Martínez-Cuenca, M. R., D. J. Iglesias, M. Talón, J. Abadía, A. F. López-Millán, E. Primo-Millo, and F. Legaz. 2013. Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck.× Poncirus trifoliata (L.) Raf.]. Tree Physiology 33 (3):320–9. doi: 10.1093/treephys/tpt011.
  • Martinez-Cuenca, M. R., A. Primo-Capella, A. Quinones, A. Bermejo, and M. A. Forner-Giner. 2017. Rootstock influence on iron uptake responses in Citrus leaves and their regulation under the Fe paradox effect. PeerJ. 5: E 3553.
  • McCray, J. M., and J. E. Matocha. 1992. Effects of soil water levels on solution bicarbonate, chlorosis and growth of sorghum. Journal of Plant Nutrition 15 (10):1877–90. doi: 10.1080/01904169209364445.
  • Meena, N. K. K. Choudhary, N. Negi, V. S. Meena, and V. Gupta. 2021. Nutritional Composition of Stone Fruits. In Production Technology of Stone Fruits (227–51. Springer, Singapore.
  • Mengel, K. 1994. Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant and Soil 165 (2):275–83. doi: 10.1007/BF00008070.
  • Mengel, K. 1995. Iron availability in plant tissues—iron chlorosis on calcareous soils. In Iron nutrition in soils and plants (389–97. Springer, Dordrecht.
  • Mengel, K., R. Planker, and B. Hoffmann. 1994. Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annuus L.). Journal of Plant Nutrition 17 (6):1053–65. doi: 10.1080/01904169409364787.
  • Mimmo, T., D. Del Buono, R. Terzano, N. Tomasi, G. Vigani, C. Crecchio, R. Pinton, G. Zocchi, and S. Cesco. 2014. Rhizospheric organic compounds in the soil–microorganism–plant system: Their role in iron availability. European Journal of Soil Science 65 (5):629–42. doi: 10.1111/ejss.12158.
  • Molassiotis, A., G. Tanou, G. Diamantidis, A. Patakas, and I. Therios. 2006. Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. Journal of Plant Physiology 163 (2):176–85. doi: 10.1016/j.jplph.2004.11.016.
  • Morales, F., Z. G. Cerovic, and I. Moya. 1994. Characterization of blue-green fluorescence in the mesophyll of sugar beet (Beta vulgaris L.) leaves affected by iron deficiency. Plant Physiology 106 (1):127–33.
  • Moreno, M. A., and R. Cambra. 1994. Adarcias: An almond x peach hybrid rootstock. HortScience 29 (8):925. doi: 10.21273/HORTSCI.29.8.925.
  • Moreno, M. A., M. C. Tabuenca, and R. Cambra. 1995b. Ademir, a Myrobalan rootstock for plums. Hortic. Sci 30 (7):1475–6.
  • Moreno, M. A., M. C. Tabuenca, and R. Cambra. 1995a. Adesoto 101, a plum roootstock for peaches and other stone fruit. HortScience 30 (6):1314–5. doi: 10.21273/HORTSCI.30.6.1314.
  • Mori, S., and N. Nishizawa. 1987. Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant and Cell Physiology 28 (6):1081–92.
  • Nadal, P., S. López-Rayo, J. Loren, and J. J. Lucena. 2013. Efficacy of HBED/Fe3. + at supplying iron to Prunus persica in calcareous soils. European Journal of Agronomy 45:105–13. doi: 10.1016/j.eja.2012.11.003.
  • Navarro, C., R. Fernández-Escobar, and M. Benlloch. 1992. A low-pressure, trunk-injection method for introducing chemical formulations into olive trees. Journal of the American Society for Horticultural Science 117 (2):357–60. doi: 10.21273/JASHS.117.2.357.
  • Nishio, J. N., S. E. Taylor, and N. Terry. 1985. Changes in thylakoid galactolipids and proteins during iron nutrition-mediated chloroplast development. Plant Physiology 77 (3):705–11. doi: 10.1104/pp.77.3.705.
  • Obreza, T. A., A. K. Alva, and D. V. Calvert. 1993. Citrus fertilizer management on calcareous soils. Circular of Florida Cooperative Exlension Service 1127:9. p.
  • Okie, W. R. 1983. Rootstocks for cherry, plum and apricot present and future. Fruit Var. J 36:15–23.
  • Opazo, I., G. Toro, A. Salvatierra, C. Pastenes, and P. Pimentel. 2020. Rootstocks modulate the physiology and growth responses to water deficit and long-term recovery in grafted stone fruit trees. Agricultural Water Management 228:105897. doi: 10.1016/j.agwat.2019.105897.
  • Oserkowsky, J. 1933. Quantitative relation between chlorophyll and iron in green and chlorotic pear leaves. Plant Physiology 8 (3):449–68. doi: 10.1104/pp.8.3.449.
  • Palmer, C. M., and M. L. Guerinot. 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology 5 (5):333–40.
  • Papastylianou, I. 1993. Timing and rate of iron chelate application to correct chlorosis of peanut. Journal of Plant Nutrition 16 (7):1193–203. doi: 10.1080/01904169309364605.
  • Pestana, M., P. J. Correia, T. Saavedra, F. Gama, S. Dandlen, G. Nolasco, and A. D. Varennes. 2013. Root ferric chelate reductase is regulated by iron and copper in strawberry plants. Journal of Plant Nutrition 36 (13):2035–47. doi: 10.1080/01904167.2013.816731.
  • Peterlunger, E., Testolin, R., Youssef, J. 1988. Valutazione di alcuni portinnesti per il pesco. In: I Portinnesti delle Piante da Frutto. Ismea-Agricoltura Ricerca, 175–186.
  • Rom, R. C. 1983. The peach rootstock situation: An international perpective. Fruit Varieties Journal 36: 3–14.
  • Potter, D., T. Eriksson, R. C. Evans, S. Oh, J. E. E. Smedmark, D. R. Morgan, M. Kerr, K. R. Robertson, M. Arsenault, T. A. Dickinson, et al. 2007. Phylogeny and classification of Rosaceae. Plant Systematics and Evolution 266 (1–2):5–43. doi: 10.1007/s00606-007-0539-9.
  • Przybyla-Toscano, J., M. Roland, F. Gaymard, J. Couturier, and N. Rouhier. 2018. Roles and maturation of iron-sulfur proteins in plastids. Journal of Biological Inorganic Chemistry : JBIC : A Publication of the Society of Biological Inorganic Chemistry 23 (4):545–66. doi: 10.1007/s00775-018-1532-1.
  • Qin, L., Y. Rao, L. Li, J. Huang, W. Xu, and X. Li. 2013. Cotton GalT1 encoding a putative glycosyltransferase is involved in regulation of cell wall pectin biosynthesis during plant development. PLoS One 8 (3):e59115. doi: 10.1371/journal.pone.0059115.
  • Rabotti, G., and G. Zocchi. 1994. Plasma membrane‐bound H+‐ATPase and reductase activities in Fe‐deficient cucumber roots. Physiologia Plantarum 90 (4):779–85. doi: 10.1111/j.1399-3054.1994.tb02537.x.
  • Raliya, R., V. Saharan, C. Dimkpa, and P. Biswas. 2018. Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. Journal of Agricultural and Food Chemistry 66 (26):6487–503.
  • Rashid, A., G. A. Couvillon, and J. B. Jones. 1990. Assessment of Fe status of peach rootstocks by techniques used to distinguish chlorotic and non‐chlorotic leaves. Journal of Plant Nutrition 13 (2):285–307. doi: 10.1080/01904169009364074.
  • Rehder, A. 1940. Manual of cultivated trees and shrubs, 2nd edn. MacMillan, New York, pp 452–481.
  • Tagliavini, M., Rombolà, A. 2001. Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy 15:71–92. doi: 10.1016/S1161-0301(01)00125-3.
  • Reil, W. O., and J. Beutel. 1976. A pressure machine for injecting trees. California Agriculture 30 (12):4–5.
  • Rombolà, A. D, and M. Tagliavini. 2006. Iron nutrition of fruit tree crops. In Iron nutrition in plants and rhizospheric microorganisms (61–83. Springer, Dordrecht.
  • Romera, F. J., E. Alcantara, and M. D. De La Guardia. 1992. Effects of bicarbonate, phosphate and high pH on the reducing capacity of Fe‐deficient sunflower and cucumber plants. Journal of Plant Nutrition 15 (10):1519–30. doi: 10.1080/01904169209364418.
  • Römheld, V., and F. Awad. 2000. Significance of root exudates in acquisition of heavy metals from a contaminated calcareous soil by graminaceous species. Journal of Plant Nutrition 23 (11-12):1857–66. doi: 10.1080/01904160009382148.
  • Roncel, M., A. A. González-Rodríguez, B. Naranjo, P. Bernal-Bayard, A. M. Lindahl, M. Hervás, J. A. Navarro, and J. M. Ortega. 2016. Iron deficiency induces a partial inhibition of the photosynthetic electron transport and a high sensitivity to light in the diatom Phaeodactylum tricornutum. Frontiers in Plant Science 7:1050. doi: 10.3389/fpls.2016.01050.
  • Sadrarhami, A., A. H. Khoshgoftarmanesh, and H. R. Sharifi. 2010. Using stress tolerance indicator (STI) to select high grain yield iron-deficiency tolerant wheat genotypes in calcareous soils. Field Crops Research 119 (1):12–9. doi: 10.1016/j.fcr.2010.06.008.
  • Sahin, O., A. Gunes, M. B. Taskin, and A. Inal. 2017. Investigation of responses of some apple (Mallus x domestica Borkh.) cultivars grafted on MM106 and M9 rootstocks to lime-induced chlorosis and oxidative stress. Scientia Horticulturae 219:79–89. doi: 10.1016/j.scienta.2017.03.006.
  • Samaranayake, P., B. D. Peiris, and S. Dssanayake. 2012. Effect of excessive ferrous (Fe2+) on growth and iron content in rice (Oryza sativa. )Int. J. Agri. Biol 14:296–8.
  • Sanz, M., J. Pascual, and J. Machín. 1997. Prognosis and correction of iron chlorosis in peach trees: Influence on fruit quality. Journal of Plant Nutrition 20 (11):1567–72. doi: 10.1080/01904169709365357.
  • Sharma, J. B., N. Chauhan, K. Rana, and M. Bakshi. 2020. Evaluation of Rootstocks for Temperate Fruit Crops-A Review. International Journal of Current Microbiology and Applied Sciences 9 (11):3533–9. doi: 10.20546/ijcmas.2020.911.422.
  • Sharma, R. A, and A. R. Azad. 2020. A Research Note on Chlorosis (Yellowing) in Plants: A Serious Problem and its Remedy. India: AGRICULTURE & FOOD: e-NEWSLETTER.
  • Shenker, M., and Y. Chen. 2005. Increasing iron availability to crops: Fertilizers, organo‐fertilizers, and biological approaches. Soil Science and Plant Nutrition 51 (1):1–17. doi: 10.1111/j.1747-0765.2005.tb00001.x.
  • Shi, W., J. Wen, and S. Lutz. 2013. Pollen morphology of the Maddenia clade of Prunus and its taxonomic and phylogenetic implications. Journal of Systematics and Evolution 51 (2):164–83. doi: 10.1111/j.1759-6831.2012.00233.x.
  • Siebner-Freibach, H., Y. Hadar, and Y. Chen. 2004. Interaction of iron chelating agents with clay minerals. Soil Science Society of America Journal 68 (2):470–80. doi: 10.2136/sssaj2004.4700.
  • Smith, B. R., P. R. Fisher, and W. R. Argo. 2004. Growth and pigment content of container-grown impatiens and petunia in relation to root substrate pH and applied micronutrient concentration. HortScience 39 (6):1421–5. doi: 10.21273/HORTSCI.39.6.1421.
  • Smolders, A. J. P., R. J. J. Hendriks, H. M. Campschreur, and J. G. M. Roelofs. 1997. Nitrate induced iron deficiency chlorosis in Juncus acutiflorus. Plant and Soil 196 (1):37–45. doi: 10.1023/A:1004293012462.
  • Socias i Company, R. J. Gomez Aparisi, and A. J. Felipe. 1995. A genetical approach to iron chlorosis in deciduous fruit trees. In Abad’ıa, J. (Ed.), Iron Nutrition in Soil and Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, 167–74.
  • Somers, I. I., S. G. Gilbert, and J. W. Shive. 1942. The iron-manganese ratio in relation to the respiratory CO2 and deficiency-toxicity symptoms in soybeans. Plant Physiology 17 (2):317–20. doi: 10.1104/pp.17.2.317.
  • Sönmez, S., and M. Kaplan. 2005. Comparison of various analysis methods for determination of iron chlorosis in apple trees. Journal of Plant Nutrition 27 (11):2007–18. doi: 10.1081/PLN-200030104.
  • Susin, S., J. Abian, F. Sanchez-Baeza, M. L. Peleato, A. Abadia, E. Gelpi, and J. Abadia. 1993. Riboflavin 3 ‘-and 5 ‘-sulfate, two novel flavins accumulating in the roots of iron-deficient sugar beet (Beta vulgaris). The Journal of Biological Chemistry 268 (28):20958–65.
  • Syrgiannidis, G. 1985. Control of iron chlorosis and replant diseases in peach by using the GF 677 rootstock. Acta Horticulturae 173 (173):383–8. doi: 10.17660/ActaHortic.1985.173.43.
  • Szlek, M., G. W. Miller, and G. W. Welkie. 1990. Potassium effect on iron stress in tomato. I. The effect on pH, Fe‐reductase and chlorophyll. Journal of Plant Nutrition 13 (2):215–29. doi: 10.1080/01904169009364069.
  • Terry, N. 1983. Limiting factors in photosynthesis: IV. Iron stress-mediated changes in light-harvesting and electron transport capacity and its effects on photosynthesis in vivo. Plant Physiology 71 (4):855–60. doi: 10.1104/pp.71.4.855.
  • Thomas, F. M., T. Brandt, and G. Hartmann. 1998. Leaf chlorosis in pedunculate oaks (Quercus robur L) on calcareous soils resulting from lime-induced manganese/iron-deficiency: Soil conditions and physiological reactions. Journal of Applied Botany 72:28–36.
  • Tian, H., H. Yan, S. Tan, P. Zhan, X. Mao, P. Wang, and Z. Wang. 2016. Apricot Kernel Oil Ameliorates Cyclophosphamide‐Associated Immunosuppression in Rats. Lipids 51 (8):931–9. doi: 10.1007/s11745-016-4166-5.
  • Tisdale, S. L. W. L. Nelson, J. D. Beaton, and J. L. Havlin. 1993. Soil Fertility and Fertilizers, 5th ed, Macmillan Publishing Co., New York, NY, USA.
  • Tukey, H. B., S. H. Wittwer, and M. J. Bukovac. 1961. Absorption of radionuclides by aboveground plant parts and movement within the plant. Journal of Agricultural and Food Chemistry 9 (2):106–12. doi: 10.1021/jf60114a006.
  • Wallace, A. 1991. Rational approaches to control of iron deficiency other than plant breeding and choice of resistant cultivars. In Iron nutrition and interactions in plants (323–30. Springer, Dordrecht.
  • Wallace, A., and R. T. Mueller. 1978. Complete Neutralization of a Portion of Calcareous Soil as a Means of Preventing Iron Chlorosis 1. Agronomy Journal 70 (5):888–90. doi: 10.2134/agronj1978.00021962007000050044x.
  • Wallace, A., G. A. Wallace, and J. W. Cha. 1992. Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents‐‐the special case of iron. Journal of Plant Nutrition 15 (10):1589–98. doi: 10.1080/01904169209364424.
  • Wallace, G. A., and A. Wallace. 1986. Correction of iron deficiency in trees by injection with ferric ammonium citrate solution. Journal of Plant Nutrition 9 (3):981–6. doi: 10.1080/01904168609363498.
  • Wei, L. C., W. R. Ocumpaugh, and R. H. Loeppert. 1994. Differential Effect of Soil Temperature on Iron‐Deficiency Chlorosis in Susceptible and Resistant Subclovers. Crop Science 34 (3):715–21. doi: 10.2135/cropsci1994.0011183X003400030021x.
  • Welkie, G. W. 1995. Effect of root temperature on iron stress responses. In J. Abadia (ed.), Iron nutrition in soils and plants. K1uwer Academic Publishers, Dordrecht, Netherlands, 229–34.
  • Ylivainio, K., A. Jaakkola, and R. Aksela. 2004. Effects of Fe compounds on nutrient uptake by plants grown in sand media with different pH. Journal of Plant Nutrition and Soil Science 167 (5):602–8. doi: 10.1002/jpln.200420412.
  • Zaharieva, T. 1995. Iron-manganese interactions in peanut plants as influenced by the source of applied iron. In 1. Abadla (ed.), Iron nutrition in soils and plants. Kluwer Academic Pubtishers, Dordrocht, Netherlands, 277–82.
  • Zhao, Y., M. Sun, Z. Liang, H. Li, F. Yu, and S. Liu. 2020. Analysis of contrast iron chlorosis tolerance in the pear cv. ‘Huangguan’grafted onto pyrus betulifolia and quince A grown in calcareous soils. Scientia Horticulturae 271:109488. doi: 10.1016/j.scienta.2020.109488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.