299
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of nitrogen application rate under organic and conventional systems on rice (Oryza sativa L.) growth, grain yield, soil properties, and greenhouse gas emissions

ORCID Icon, , , , ORCID Icon, , & ORCID Icon show all
Pages 1627-1649 | Received 02 Feb 2022, Accepted 16 Jun 2022, Published online: 05 Jul 2022

References

  • Alpha, J. M., J. Chen, and G. Zhang. 2009. Effect of nitrogen fertilizer forms on growth, photosynthesis, and yield of rice under cadmium stress. Journal of Plant Nutrition 32 (2):306–17. doi: 10.1080/01904160802608635.
  • Azarpour, E., M. Moraditochaee, and H. R. Bozorgi. 2014. Effect of nitrogen fertilizer management on growth analysis of rice cultivars. International Journal of Biosciences 4:35–47. doi:10.12692/ijb/4.5.35-47.
  • Behera, A. K. 1998. Response of scented rice (Oryza sativa L.) to nitrogen under transplanted condition. Indian Journal of Agronomy 43:64–7.
  • Berntsen, J., R. Grant, J. E. Olesen, I. S. Kristensen, F. P. Vinther, J. P. Mølgaard, and B. M. Petersen. 2006. Nitrogen cycling inorganic farming systems with rotational grass-clover and arable crops. Soil Use and Management 22 (2):197–208. doi: 10.1111/j.1475-2743.2005.00016.x.
  • Bijay Singh, Y. S., Singh, M. S. Maskina, O. P. Meelu. 1996. The value of poultry manure for wetland rice grown in rotation with wheat. Nutrient Cycling in Agroecosystems 47 (3):243–50. doi: 10.1007/BF01986279.
  • Chaudhary, S., G. S. Dheri, and B. S. Brar. 2017. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system. Soil and Tillage Research 166:59–66. doi: 10.1016/j.still.2016.10.005.
  • Collier, S. M., M. D. Ruark, L. G. Oates, W. E. Jokela, and C. J. Dell. 2014. Measurement of greenhouse gas flux from agricultural soils using static chambers. Journal of Visualized Experiments 90 (90): E 52110. doi: 10.3791/52110.
  • Counce, P. A. 1987. Asymptotic and parabolic yield and linear nutrient content responses to rice population density. Agronomy Journal 79 (5):864–9. doi: 10.2134/agronj1987.00021962007900050022x.
  • Cooper, J. M., and P. R. Warman. 1997. Effects of three fertility amendments on soil dehydrogenase activity, organic C and pH. Canadian Journal of Soil Science 77 (2):281–3. doi: 10.4141/S96-023.
  • Crutchfield, J. D., and J. H. Grove. 2011. A new cadmium reduction device for the microplate determination of nitrate in water, soil, plant tissue, and physiological fluids. Journal of AOAC International 6:1896–905. doi: 10.5740/jaoacint.10-454.
  • De Ponti, T., B. Rijk, and M. K. van Ittersum. 2012. The crop yield gap between organic and conventional agriculture. Agricultural Systems 108:1–9. doi: 10.1016/j.agsy.2011.12.004.
  • Koffi, D., B. B. Vincent, and M. C. Valere. 2016. Effect of nitrogen fertilizer on yield and nitrogen use efficiency of four aromatic rice varieties. Emirates Journal of Food and Agriculture 28:126–35. doi:10.9755/ejfa.2015-05-250.
  • Dong, W., X. Zhang, H. Wang, X. Dai, X. Sun, W. Qiu, and F. Yang. 2012. Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PLoS One 7 (9):e44504. doi: 10.1371/journal.pone.0044504.
  • Dong, Z., L. Wu, J. Chai, Y. Zhu, Y. Chen, and Y. Zhu. 2015. Effects of nitrogen application rates on rice grain yield, nitrogen-use efficiency, and water quality in paddy field. Communications in Soil Science and Plant Analysis 46 (12):1579–94. doi: 10.1080/00103624.2015.1045595.
  • Dubey, L., M. Dubey, and P. Jain. 2015. Role of green manuring organic farming. Plant Archives 15:23–6.
  • Eller, G., and P. Frenzel. 2001. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Applied and Environmental Microbiology 67 (6):2395–403. doi: 10.1128/AEM.67.6.2395-2403.2001.
  • EL-Refaee, I. S., F. A. Srour, M. H. Ibrahiem, and I. A. Sheta. 2015. Effect of nitrogen fertilizer and planting method on: Grain yield and quality of rice. Egyptian Journal of Agricultural Research 93:549–64.
  • Fan, M., J. Shen, L. Yuan, R. Jiang, X. Chen, W. J. Davies, and F. Zhang. 2012. Improving crop productivity and resource efficiency to ensure food security and environmental quality in China. Journal of Experimental Botany 63 (1):13–24. doi: 10.1093/jxb/err248.
  • Gruca-Rokosz, R., and P. Koszelnik. 2018. Production pathways for CH4 and CO2 in sediments of two freshwater ecosystems in south-eastern Poland. PLoS One 13 (6):e0199755. doi: 10.1371/journal.pone.0199755.
  • Guo, J., R. L. McCulley, T. D. Phillips, and D. H. McNear. Jr. 2016. Fungal endophyte and tall fescue cultivar interact to differentially affect bulk and rhizosphere soil processes governing C and N cycling. Soil Biology and Biochemistry 101:165–74. doi: 10.1016/j.soilbio.2016.07.014.
  • Hadi, A., K. Inubushi, and K. Yagi. 2010. Effect of water management on greenhouse gas emissions and microbial properties of paddy soils in Japan and Indonesia. Paddy and Water Environment 8 (4):319–24. doi: 10.1007/s10333-010-0210-x.
  • Harris, R. C., E. Gorham, D. I. Sebacher, K. B. Bartlett, and P. A. Flebbe. 1985. Methane flux from northern peatland. Nature 315 (6021):652–4. doi: 10.1038/315652a0.
  • Hasegawa, T., Y. Koroda, N. G. Seligman, and T. Horie. 1994. Response of spikelet number to plant nitrogen concentration and dry weight in paddy rice. Agronomy Journal 86 (4):673–6. doi: 10.2134/agronj1994.00021962008600040016x.
  • Hay, R. K. M. 1995. Harvest index: A review of its use in plant breeding and crop physiology. Annals of Applied Biology 126 (1):197–216. doi: 10.1111/j.1744-7348.1995.tb05015.x.
  • Herzog, T. K. A. Baumert, and J. Pershing. 2006. Target: Intensity (An analysis of greenhouse gas intensity targets), 25. Washington, DC: World Resources Institute. https://www.wri.org/research/target-intensity (assessed September 10, 2021).
  • Hou, M., F. Luo, D. Wu, X. Zhang, M. Lou, D. Shen, M. Yan, C. Mao, X. Fan, G. Xu, et al. 2021. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. The New Phytologist 229 (2):935–49. doi: 10.1111/nph.16901.
  • Huang, L., J. Yu, J. Yang, R. Zhang, Y. Bai, C. Sun, and H. Zhuang. 2016. Relationships between yield, quality and nitrogen uptake and utilization of organically grown rice varieties. Pedosphere 26 (1):85–97. doi: 10.1016/S1002-0160(15)60025-X.
  • IPCC. 2014. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change. Cambridge: Cambridge University Press.
  • Jerkins, D, and J. Ory. 2016. National organic research agenda: Outcomes and recommendations from the 2015 national organic farmer survey and listening sessions. https://ofrf.org/wp-content/uploads/2019/09/NORA_2016_final9_28.pdf (accessed May 27, 2020).
  • Jha, P., K. M. Hati, R. C. Dalal, Y. P. Dang, P. M. Kopittke, and N. W. Menzies. 2020. Soil carbon and nitrogen dynamics in a Vertisol following 50 years of no tillage, crop stubble retention and nitrogen fertilization. Geoderma 358:113996. doi: 10.1016/j.geoderma.2019.113996.
  • Jia, D., J. Lu, Y. Sun, S. Song, H. Du, and L. Han. 2016. Effect of different nitrogen fertilizer application strategies on rice growth and yield. Asian Agricultural Research 8:33–9. doi: 10.22004/ag.econ.241299.
  • Kögel-Knabner, I., W. Amelung, Z. Cao, S. Fiedler, P. Frenzel, R. Jahn, K. Kalbitz, A. Kölbl, and M. Schloter. 2010. Biogeochemistry of paddy soils. Geoderma 157 (1–2):1–14. doi: 10.1016/j.geoderma.2010.03.009.
  • Krüger, M., G. Eller, R. Conrad, and P. Frenzel. 2002. Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors. Global Change Biology 8 (3):265–80. doi: 10.1046/j.1365-2486.2002.00476.x.
  • Ku, H., K. Hayashi, R. Agbisit, and G. Villegas-Pangga. 2017. Effect of rates and sources of nitrogen on rice yield, nitrogen efficiency, and methane emission from irrigated rice cultivation. Archives of Agronomy and Soil Science 63 (7):1009–22. doi: 10.1080/03650340.2016.1255327.
  • Kumar, M., S. K. Singh, and J. S. Bohra. 2020. Cumulative effect of organic and inorganic sources of nutrients on yield, nutrients uptake and economics by rice–wheat cropping system in indo-gangetic plains of India. Communications in Soil Science and Plant Analysis 51 (5):658–74. doi: 10.1080/00103624.2020.1729788.
  • Kupisch, M., A. Stadler, M. Langensiepen, and F. Ewert. 2015. Analysis of spatio-temporal patterns of CO2 and H2O fluxes in relation to crop growth under field conditions. Field Crops Research 176:108–18. doi: 10.1016/j.fcr.2015.02.011.
  • Lee, D. K., J. J. Doolittle, and V. N. Owens. 2007. Soil carbon dioxide fluxes in established switchgrass land managed for biomass production. Soil Biology and Biochemistry 39 (1):178–86. doi: 10.1016/j.soilbio.2006.07.004.
  • Li, C. F., C. F. Cao, J. P. Wang, Z. B. Zhai, and S. H. Mei. 2009. CH4 and CO2 emissions from paddy soils and assessment of carbon budget in different tillage systems. Journal of Agro-Environment Science 28 (12):2482–8.
  • Li, J., J. M. Cooper, Z. Lin, Y. Li, X. Yang, and B. Zhao. 2015. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Applied Soil Ecology 96:75–87. doi: 10.1016/j.apsoil.2015.07.001.
  • Li, J., Y. C. Wen, X. Li, Y. Li, X. Yang, Z. Lin, Z. Song, J. Cooper, and B. Zhao. 2018. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil and Tillage Research 175:281–90. doi: 10.1016/j.still.2017.08.008.
  • Li, X., W. Yan, H. Agrama, L. Jia, A. Jackson, K. Moldenhauer, K. Yeater, A. McClung, and D. Wu. 2012. Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLoS One 7 (1):e29350. doi: 10.1371/journal.pone.0029350.
  • Li, X., F. Dou, K. B. Watkins, S. Wang, K. Chen, X. Zhou, A. McClung, J. O. Storlien, and F. M. Hons. 2020. Seeding rate effects on organic rice growth, yield, and economic returns. Agronomy Journal 112 (5):4104–19. doi: 10.1002/agj2.20304.
  • Liu, L., C. Li, S. Zhu, Y. Xu, H. Li, X. Zheng, and R. Shi. 2020. Combined application of organic and inorganic nitrogen fertilizers affects soil prokaryotic communities compositions. Agronomy 10 (1):132. doi: 10.3390/agronomy10010132.
  • Lundquist, E. J., K. M. Scow, L. E. Jackson, S. L. Uesugi, and C. R. Johnson. 1999. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biology and Biochemistry 31 (12):1661–75. doi: 10.1016/S0038-0717(99)00080-2.
  • Luo, L., S. Pan, X. Liu, H. Wang, and G. Xu. 2017. Nitrogen deficiency inhibits cell division-determined elongation, but not initiation, of rice tiller buds. Israel Journal of Plant Sciences 64 (3–4):1–40. doi: 10.1080/07929978.2016.1275367.
  • Ma, Y. Q., C. C. Qian, D. P. Sun, L. P. Deng, G. Q. Huang, and W. B. Lu. 2016. Effect of nitrogen fertilizer application on greenhouse gas emissions from soil in paddy field. Transactions of the Chinese Society of Agricultural Engineering 32:128–34. doi:10.11975/j.issn.1002-6819.2016.z2.017.
  • Mae, T. 1997. Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant and Soil 196 (2):201–10. doi: 10.1023/A:1004293706242.
  • Mandana, T., G. Akif, A. Ebrahim, and N. Z. Azin. 2014. Effect of nitrogen on rice yield, yield components and quality parameters. African Journal of Biotechnology 13:91–105.
  • Manzoor, Z., L. Ali, S. Akhtar, M. Ijaz, M. Akhter, M. K. Bhati, M. Rizwan, and W. Hussain. 2015. Effect of different nitrogen levels on yield and yield components of fine grain advance rice line PK 8677-18-7-1-14. Pakistan Journal of Science 67:235–8.
  • Masunga, R. H., V. N. Uzokwe, P. D. Mlay, I. Odeh, A. Singh, D. Buchan, and S. D. Neve. 2016. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Applied Soil Ecology 101:185–93. doi: 10.1016/j.apsoil.2016.01.006.
  • Matsumoto, H., and K. Tamura. 1981. Respiratory stress in cucumber roots treated with ammonium or nitrate nitrogen. Plant and Soil 60 (2):195–204. doi: 10.1007/BF02374104.
  • Minamikawa, K., and N. Sakai. 2006. The practical use of water management based on soil redox potential for decreasing methane emission from a paddy 32ifield in Japan. Agriculture, Ecosystems & Environment 116 (3–4):181–8. doi: 10.1016/j.agee.2006.02.006.
  • Moe, K., K. W. Mg, K. K. Win, and T. Yamakawa. 2017. Effects of combined application of inorganic fertilizer and organic manures on nitrogen use and recovery efficiencies of hybrid rice. American Journal of Plant Sciences 08 (05):1043–64. doi: 10.4236/ajps.2017.8506.
  • Moe, K., S. M. Moh, A. Z. Htwe, Y. Kajihara, and T. Yamakawa. 2019. Effects of integrated organic and inorganic fertilizers on yield and growth parameters of rice varieties. Rice Science 26 (5):309–18. doi: 10.1016/j.rsci.2019.08.005.
  • Mosier, A. R., A. D. Halvorson, C. A. Reule, and X. J. Liu. 2006. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado. Journal of Environmental Quality 35 (4):1584–98. doi: 10.2134/jeq2005.0232.
  • Myint, A. K., T. Yamakawa, T. Zenmyo, H. T. B. Thao, and P. S. Sarr. 2011. Effects of organic-manure application on growth, grain yield, and nitrogen, phosphorus, and potassium recoveries of rice variety Manawthuka in paddy soils of differing fertility. Communications in Soil Science and Plant Analysis 42 (4):457–74. doi: 10.1080/00103624.2011.542223.
  • Naser, H. M., O. Nagata, S. Tamura, and R. Hatano. 2007. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Science and Plant Nutrition 53 (1):95–101. doi: 10.1111/j.1747-0765.2007.00105.x.
  • Neff, J. C., A. R. Townsend, G. Gleixner, S. J. Lehman, J. Turnbull, and W. D. Bowman. 2002. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419 (6910):915–7. doi: 10.1038/nature01136.
  • Peng, S. J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush, and K. G. Cassman. 2004. Rice yield decline with higher night temperature from global warming. In Rice integrated crop management: Towards a rice check system in the Philippines, eds. E. D. Redona, A. P. Castro, G. P. Llanto, 46–56. Nueva Ecija, Philippines: Phil Rice.
  • Peng, W., Y. Zeng, Q. Shi, and S. Huang. 2017. Responses of rice yield and the fate of fertilizer nitrogen to soil organic carbon. Plant, Soil and Environment 63:416–21. doi: 10.17221/389/2017-PSE.
  • Phillips, R. P., and T. J. Fahey. 2007. Fertilization effects on fine root biomass, rhizosphere microbes and respiratory fluxes in hard wood forest soils. The New Phytologist 176 (3):655–64. doi: 10.1111/j.1469-8137.2007.02204.x.
  • Pramanik, K., and A. K. Bera. 2013. Effect of seedling age and nitrogen on growth, chlorophyll content, yield and economics of hybrid rice (Oryza sativa L.). International Journal of Plant Production 4 (S):3489–99.
  • Rogers, C. W., R. J. Norman, T. J. Siebenmorgen, B. C. Grigg, J. T. Hardke, K. R. Brye, and E. E. Gbur. 2016. Rough rice and milling yields as affected by nitrogen, harvest moisture, and cultivar. Agronomy Journal 108 (2):813–21. doi: 10.2134/agronj2015.0254.
  • Saichuk, J. K. S. B. Blanche, E. Eskew, D. L. Harrell, D. E. Growth, C. Hollier, N. Hummel, S. D. Linscombe, C. Rush, X. Sha, et al. 2008. Rice varieties and management tips 2009. Baton Rouge, LA: L.S.U. Agricultural Center.
  • Santoro, A. E., C. Buchwald, M. R. Mcilvin, and K. L. Casciotti. 2011. Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science 333 (6047):1282–5. doi: 10.1126/science.1208239.
  • Shelp, B. J., D. C. Taylor, and L. M. Nelson. 1991. Carbon and nitrogen partitioning in young nodulated pea (wild type and nitrate reductase deficient mutant) plants exposed to NO3− or NH4+. Canadian Journal of Botany 69 (8):1780–6. doi: 10.1139/b91-226.
  • Sun, B. F., H. Zhao, Y. Z. Lu, F. Lu, and X. K. Wang. 2016. The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands. Journal of Integrative Agriculture 15 (2):440–50. doi: 10.1016/S2095-3119(15)61063-2.
  • Tang, J., J. J. Wang, Z. Y. Li, S. N. Wang, and Y. K. Qu. 2018. Effects of irrigation regime and nitrogen fertilizer management on CH4, N2O and CO2 emissions from saline–alkaline paddy fields in northeast China. Sustainability 10 (2):475. doi: 10.3390/su10020475.
  • Tejada, M., M. T. Hernandez, and C. Garcia. 2009. Soil restoration using composted plant residues: Effects on soil properties. Soil and Tillage Research 102 (1):109–17. doi: 10.1016/j.still.2008.08.004.
  • Toriyama, K., T. Amino, and K. Kobayashi. 2020. Contribution of fallow weed incorporation to nitrogen supplying capacity of paddy soil under organic farming. Soil Science and Plant Nutrition 66 (1):133–43. doi: 10.1080/00380768.2020.1716389.
  • USDA-NASS. 2017. Certified organic survey 2016 summary report (released on September 20, 2017). National agriculture statistics service. Washington, DC: United States Department of Agriculture. https://downloads.usda.library.cornell.edu/usda-esmis/files/zg64tk92g/70795b52w/4m90dz33q/OrganicProduction-09-20-2017_correction.pdf. (accessed July 16, 2020).
  • Wang, B., Y. E. Li, Y. F. Wan, X. B. Qin, Q. Z. Gao, S. Liu, and J. L. Li. 2016. Modifying nitrogen fertilizer practices can reduce greenhouse gas emissions from a Chinese double rice cropping system. Agriculture, Ecosystems & Environment 215:100–9. doi: 10.1016/j.agee.2015.09.008.
  • Wang, Y. Y., B. Zhu, Y. Shi, and C. S. Hu. 2008. Effect of nitrogen fertilization on upland rice based on pot experiments. Communications in Soil Science and Plant Analysis 39 (11–12):1733–49. doi: 10.1080/00103620802073743.
  • Wang, X., and F. E. Below. 1996. Cytokinins in enhances growth and tillering of wheat induced by mixed nitrogen source. Crop Science 36 (1):121–6. doi: 10.2135/cropsci1996.0011183X003600010022x.
  • Wardle, D. A. 1992. A comparative assessment of factors, which influence microbial biomass carbon and nitrogen levels in soils. Biological Reviews 67 (3):321–58. doi: 10.1111/j.1469-185X.1992.tb00728.x.
  • Xu, G., X. Liu, Q. Wang, R. Xiong, and Y. Hang. 2017. Effects of screenhouse cultivation and organic materials incorporation on global warming potential in rice fields. Environmental Science and Pollution Research International 24 (7):6581–91. doi: 10.1007/s11356-017-8397-7.
  • Xu, Y., H. Tang, X. Xiao, W. Li, C. Li, G. Sun, and K. Cheng. 2018. Effects of long-term fertilization management practices on soil microbial carbon and microbial biomass in paddy soil at various stages of rice growth. Rev Bras Cienc Solo 42:e0170111. doi: 10.1590/18069657rbcs20170111.
  • Yang, B., Z. Q. Xiong, J. Y. Wang, X. Xu, Q. W. Huang, and Q. R. Shen. 2015. Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice–wheat annual rotation systems in China: A 3-year field experiment. Ecological Engineering 81:289–97. doi: 10.1016/j.ecoleng.2015.04.071.
  • Yoseftabar, S. 2013. Effect of nitrogen management on panicle structure and yield in rice (Oryza sativa L.). International Journal of Agriculture and Crop Sciences 5:1224–7.
  • Yoshida, H., T. Horie, and T. Shiraiwa. 2006. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia. Field Crops Research 97 (2–3):337–43. doi: 10.1016/j.fcr.2005.11.004.
  • Yu, Q., X. Hu, J. Ma, J. Ye, W. Sun, Q. Wang, and H. Lin. 2020. Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy fields. Soil and Tillage Research 196:104483. doi: 10.1016/j.still.2019.104483.
  • Zhang, X. X., S. Yin, Y. S. Li, H. L. Zhuang, C. S. Li, and C. J. Liu. 2014. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China. The Science of the Total Environment 472:381–8. doi: 10.1016/j.scitotenv.2013.11.014.
  • Zhao, H., Z. Mo, Q. Lin, S. Pan, M. Duan, H. Tian, S. Wang, and X. Tang. 2020. Relationships between grain yield and agronomic traits of rice in southern China. Chilean Journal of Agricultural Research 80 (1):72–9. doi: 10.4067/S0718-58392020000100072.
  • Zhong, Y., X. Wang, J. Yang, X. Zhao, and X. Ye. 2016. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields. The Science of the Total Environment 565:420–6. doi: 10.1016/j.scitotenv.2016.04.167.
  • Zou, J. W., Y. Huang, Y. Lu, X. Zheng, and Y. Wang. 2005. Direct emission factor for N2O from rice-winter wheat rotation systems in southeast China. Atmospheric Environment 39 (26):4755–65. doi: 10.1016/j.atmosenv.2005.04.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.