134
Views
2
CrossRef citations to date
0
Altmetric
Research articles

Development of ammonium nitrate free nutrient media for aluminium toxicity tolerance screening of rice genotypes from North-Eastern India

ORCID Icon, , , , ORCID Icon, , , , & show all
Pages 1766-1776 | Received 19 Jul 2021, Accepted 01 Jul 2022, Published online: 18 Jul 2022

References

  • Abebe, M. 2007. Nature and management of acid soils in Ethiopia. www.eiar.gov.et/Soil/soil_acid.pdf
  • Awasthi, J. P., B. Saha, P. Regon, S. Sahoo, U. Chowra, A. Pradhan, A. Roy, and S. K. Panda. 2017. Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. Plos ONE 12 (4):e0176357. doi: 10.1371/journal.pone.0176357.
  • Balyan, S., M. Kumar, R. D. Mutum, U. Raghuvanshi, P. Agarwal, S. Mathur, and S. Raghuvanshi. 2017. Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice. Nagina 22. Scientific Reports 7 (1):1–17. doi: 10.1038/s41598-017-15450-1.
  • Barcelo, J, and C. Poschenrieder. 2002. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: A review. Environmental and Experimental Botany 48 (1):75–92. doi: 10.1016/S0098-8472(02)00013-8.
  • Brichkova, G. G., A. M. Shishlova, T. V. Maneshina, and N. A. Kartel’. 2007. Tolerance to aluminum in genetically modified tobacco plants. Cytology and Genetics 41 (3):151–5. doi: 10.3103/S0095452707030036.
  • Bushamuka, V. N., and R. W. Zobel. 1998. Maize and soybean tap, basal, and lateral root responses to a stratified acid, aluminum‐toxic soil. Crop Science 38 (2):416–21. doi: 10.2135/cropsci1998.0011183X003800020024x.
  • Dufey, I., P. Hakizimana, X. Draye, S. Lutts, and P. Bertin. 2009. QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica 167 (2):143–60. doi: 10.1007/s10681-008-9870-7.
  • Eticha, D., A. Stass, and W. J. Horst. 2005. Cell‐wall pectin and its degree of methylation in the maize root‐apex: Significance for genotypic differences in aluminium resistance. Plant, Cell and Environment 28 (11):1410–20. doi: 10.1111/j.1365-3040.2005.01375.x.
  • Famoso, A. N., K. Zhao, R. T. Clark, C. W. Tung, M. H. Wright, C. Bustamante, L. V. Kochian, and S. R. McCouch. 2011. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genetics 7 (8):e1002221.
  • Famoso, A. N., R. T. Clark, J. E. Shaff, E. Craft, S. R. McCouch, and L. V. Kochian. 2010. Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiology 153 (4):1678–91. doi: 10.1104/pp.110.156794.
  • Foy, C. D. 1988. Plant adaptation to acid, aluminum‐toxic soils. Communications in Soil Science and Plant Analysis 19 (7-12):959–87. doi: 10.1080/00103628809367988.
  • Foy, C.D. (1992). Soil Chemical Factors Limiting Plant Root Growth. In: Hatfield, J.L. and Stewart, B.A. (Eds.), Advances in Soil Sciences: Limitations to Plant Root Growth (pp. 97–149). New York: Springer Verlag. https://doi.org/10.1007/978-1-4612-2894-3_5
  • Hetherington, S. J., C. J. Asher, and F. P. C. Blamey. 1988. Comparative tolerance of sugarcane, navybean, soybean and maize to aluminium toxicity. Australian Journal of Agricultural Research 39 (2):171–6. doi: 10.1071/AR9880171.
  • Horst, W. J., A. K. Püschel, and N. Schmohl. 1997. Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize. Plant and Soil 192 (1):23–30. doi: 10.1023/A:1004204120863.
  • Jagadish, S. V. K., J. Cairns, R. Lafitte, T. R. Wheeler, A. H. Price, and P. Q. Craufurd. 2010. Genetic analysis of heat tolerance at anthesis in rice. Crop Science 50 (5):1633–41. doi: 10.2135/cropsci2009.09.0516.
  • Lin, H. X., M. Z. Zhu, M. Yano, J. P. Gao, Z. W. Liang, W. A. Su, X. H. Hu, Z. H. Ren, and D. Y. Chao. 2004. QTLs for Na + and K + uptake of the shoots and roots controlling rice salt tolerance. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 108 (2):253–60.
  • López-Bucio, J., A. Cruz-Ramırez, and L. Herrera-Estrella. 2003. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology 6 (3):280–7.
  • Lynch, J. P., and K. M. Brown. 2001. Topsoil foraging–an architectural adaptation of plants to low phosphorus availability. Plant and Soil 237 (2):225–37. doi: 10.1023/A:1013324727040.
  • Maejima, E., T. Watanabe, M. Osaki, and T. Wagatsuma. 2014. Phosphorus deficiency enhances aluminum tolerance of rice (Oryza sativa) by changing the physicochemical characteristics of root plasma membranes and cell walls. Journal of Plant Physiology 171 (2):9–15.
  • Magalhaes, J. V., D. F. Garvin, Y. Wang, M. E. Sorrells, P. E. Klein, R. E. Schaffert, L. Li, and L. V. Kochian. 2004. Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167 (4):1905–14. doi: 10.1534/genetics.103.023580.
  • Magnavaca, R., C. O. Gardner, and R. B. Clark. 1987. Evaluation of inbred maize lines for aluminum tolerance in nutrient solution. In Genetic aspects of plant mineral nutrition, 255–65. Dordrecht: Springer.
  • Miyasaka, S. C., J. G. Buta, R. K. Howell, and C. D. Foy. 1991. Mechanism of aluminum tolerance in snapbeans: Root exudation of citric acid. Plant Physiology 96 (3):737–43.
  • Miyasaka, S. C., N. V. Hue, and M. A. Dunn. 2007. Aluminum. In Handbook of plant nutrition, eds. A. V. Barker, and D. J. Pilbeam, 439–97. Boca Raton: Tayler and Francis Group.
  • Nguyen, B. D., D. S. Brar, B. C. Bui, T. V. Nguyen, L. N. Pham, and H. T. Nguyen. 2003. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 106 (4):583–93.
  • Nguyen, V. T., M. D. Burow, H. T. Nguyen, B. T. Le, T. D. Le, and A. H. Paterson. 2001. Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). Theoretical and Applied Genetics 102 (6–7):1002–10.
  • Nguyen, V., B. Nguyen, S. Sarkarung, C. Martinez, A. Paterson, and H. Nguyen. 2002. Mapping of genes controlling aluminum tolerance in rice: Comparison of different genetic backgrounds. Molecular Genetics and Genomics: MGG 267 (6):772–80.
  • Piñeros, M. A., and L. V. Kochian. 2001. A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels. Plant Physiology 125 (1):292–305. doi: 10.1104/pp.125.1.292.
  • Prakash, C., S. A. Mithra, P. K. Singh, T. Mohapatra, and N. K. Singh. 2016. Unraveling the molecular basis of oxidative stress management in a drought tolerant rice genotype Nagina 22. BMC Genomics 17 (1):774. doi: 10.1186/s12864-016-3131-2.
  • Rang, Z. W., S. V. K. Jagadish, Q. M. Zhou, P. Q. Craufurd, and S. Heuer. 2011. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environmental and Experimental Botany 70 (1):58–65. doi: 10.1016/j.envexpbot.2010.08.009.
  • Sasaki, T., Y. Yamamoto, B. Ezaki, M. Katsuhara, S. J. Ahn, P. R. Ryan, E. Delhaize, and H. Matsumoto. 2004. A wheat gene encoding an aluminum‐activated malate transporter. The Plant Journal: For Cell and Molecular Biology 37 (5):645–53.
  • Sharma, B. D., S. S. Mukhopadhyay, and J. S. Sawhney. 2006. Distribution of potassium fractions in relation to landforms in a Himalayan catena: (Verteilung von Kaliumfraktionen von Bodenarten innerhalb einer Himalaya–Catena). Archives of Agronomy and Soil Science 52 (4):469–76. doi: 10.1080/03650340600743717.
  • Shimizu, A., S. Yanagihara, S. Kawasaki, and H. Ikehashi. 2004. Phosphorus deficiency-induced root elongation and its QTL in rice. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik 109 (7):1361–8.
  • Silva, I. R., T. J. Smyth, C. D. Raper, T. E. Carter, and T. W. Rufty. 2001. Differential aluminum tolerance in soybean: An evaluation of the role of organic acids. Physiologia Plantarum 112 (2):200–10.
  • Vitorello, V. A., F. R. Capaldi, and V. A. Stefanuto. 2005. Recent advances in aluminum toxicity and resistance in higher plants. Brazilian Journal of Plant Physiology 17 (1):129–43. doi: 10.1590/S1677-04202005000100011.
  • Wang, J. P., H. Raman, G. P. Zhang, N. Mendham, and M. X. Zhou. 2006. Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. Journal of Zhejiang University. Science. B 7 (10):769–87.
  • Ward, J. T., B. Lahner, E. Yakubova, D. E. Salt, and K. G. Raghothama. 2008. The effect of iron on the primary root elongation of Arabidopsis during phosphate deficiency. Plant Physiology 147 (3):1181–91.
  • Williamson, L. C., S. P. Ribrioux, A. H. Fitter, and H. O. Leyser. 2001. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology 126 (2):875–82.
  • Wu, P., C. Y. Liao, B. Hu, K. K. Yi, W. Z. Jin, J. J. Ni, and C. He. 2000. QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theoretical and Applied Genetics 100 (8):1295–303.
  • Xue, Y., J. Wan, L. Jiang, C. Wang, L. Liu, Y. M. Zhang, and H. Zhai. 2006. Identification of quantitative trait loci associated with aluminum tolerance in rice (Oryza sativa L.). Euphytica 150 (1–2):37–45. doi: 10.1007/s10681-006-9089-4.
  • Yoshida, S. 1976. Routine procedure for growing rice plants in culture solution. In Laboratory manual for physiological studies of rice. In: Laboratory manual for physiological studies of rice, IRRI, Los Banos, The Philippines, pp 61–66

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.