122
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Quantifying biomass and whole crop macro-nutrient accumulation for six hard spring wheat genotypes grown under different nitrogen rates at ambient and elevated carbon-dioxide levels

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 2595-2607 | Received 10 Oct 2021, Accepted 05 Oct 2022, Published online: 24 Dec 2022

References

  • Adamsen, F. J., G. Wechsung, F. Wechsung, G. W. Wall, B. A. Kimball, P. J. Pinter, Jr., R. L. LaMorte, R. L. Garcia, D. J. Hunsaker, and S. W. Leavitt. 2005. Temporal changes in soil and biomass nitrogen forirrigated wheat grown under Free-Air Carbon Dioxide Enrichment (FACE). Agronomy Journal 97 (1):160–8. doi: 10.2134/agronj2005.0160.
  • Ågren, G. I. 2008. Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution, and Systematics 39 (1):153–70. doi: 10.1146/annurev.ecolsys.39.110707.173515.
  • Amthor, J. S. 2001. Effects of atmospheric CO2 concentration on wheat yield: Review of results from experiments using various approaches to control CO2 concentration. Field Crops Research 73 (1):1–34. doi: 10.1016/S0378-4290(01)00179-4.
  • Andrews, M., J. A. Raven, and P. J. Lea. 2013. Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Annals of Applied Biology 163 (2):174–99. doi: 10.1111/aab.12045.
  • Andrews, M., L. M. Condron, P. D. Kemp, J. F. Topping, K. Lindsey, S. Hodge, and J. A. Raven. 2019. Elevated CO2 effects on nitrogen assimilation and growth of C3 vascular plants are similar regardless of N-form assimilated. Journal of Experimental Botany 70 (2):683–90. doi: 10.1093/jxb/ery371.
  • Batts, G. R., R. H. Ellis, J. I. L. Morison, P. N. Nkemka, P. J. Gregory, and P. Hadley. 1998. Yield and partitioning in crops of contrasting cultivars of winter wheat in response to CO2 and temperature in field studies using temperature gradient tunnels. The Journal of Agricultural Science 130 (1):17–27. doi: 10.1017/S0021859697005017.
  • Benlloch-Gonzalez, M., R. Bochicchio, J. Berger, H. Bramley, and J. A. Palta. 2014. High temperature reduces the positive effect of elevated CO2 on wheat root system growth. Field Crops Research 165:71–9. doi: 10.1016/j.fcr.2014.04.008.
  • Bloom, A. J. 2006. Rising carbon dioxide concentrations and the future of crop production. Journal of the Science of Food and Agriculture 86 (9):1289–91. doi: 10.1002/jsfa.2502.
  • Broberg, M. C., P. Högy, Z. Feng, and H. Pleijel. 2019. Effects of elevated CO2 on wheat yield: Non-linear response and relation to site productivity. Agronomy 9 (5):243. doi: 10.3390/agronomy9050243.
  • Broberg, M. C., P. Högy, and H. Pleijel. 2017. CO2-induced changes in wheat grain composition: Meta-analysis and response functions. Agronomy 7 (2):32. doi: 10.3390/agronomy7020032.
  • Cakmak, I., C. Hengeler, and H. Marschner. 1994. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. Journal of Experimental Botany 45 (9):1245–50. doi: 10.1093/jxb/45.9.1245.
  • Chakwizira, E. 2021. Crop and nutrient harvest indices for spring wheat genotypes grown with different fertiliser and carbon dioxide levels, under field and controlled environments, Agricultural Sciences. PhD Thesis, Lincoln University, Christchurch, New Zealand. https://hdl.handle.net/10182/13610
  • Chakwizira, E., D. J. Moot, and E. Teixeira. 2022. Quantifying morpho-physiological traits that describe canopy and biomass formation and partitioning processes for spring wheat genotypes grown under contrasting nitrogen supply. New Zealand Journal of Crop and Horticultural Science. doi: 10.1080/01140671.2022.2028862.
  • Chaudhuri, U. N., M. B. Kirkham, and E. T. Kanemasu. 1990. Root growth of winter wheat under elevated carbon dioxide and drought. Crop Science 30 (4):853–7. doi: 10.2135/cropsci1990.0011183X003000040017x.
  • Conroy, J. P. 1992. Influence of elevated atmospheric CO2 concentrations on plant nutrition. Australian Journal of Botany 40 (5):445–56. doi: 10.2135/cropsci1990.0011183X003000040017x.
  • Fangmeier, A., U. Grüters, P. Högy, B. Vermehren, and H. J. Jäger. 1997. Effects of elevated CO2, nitrogen supply and tropospheric ozone on spring wheat—II. Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn). Environmental Pollution 96 (1):43–59. doi: 10.1016/S0269-7491(97)00013-4.
  • Fung, I. Y., S. C. Doney, K. Lindsay, and J. John. 2005. Evolution of carbon sinks in a changing climate. Proceedings of the National Academy of Sciences of the United States of America 102 (32):11201–6. doi: 10.1073/pnas.0504949102.
  • Gifford, R. M., D. J. Barrett, and J. L. Lutze. 2000. The effects of elevated [CO2] on the C:N and C:P mass ratios of plant tissues. Plant and Soil 224 (1):1–14. doi: 10.1023/A:1004790612630.
  • Goosse, H., P.-Y. Barriat, V. Brovkin, F. Klein, K. J. Meissner, L. Menviel, and A. Mouchet. 2022. Changes in atmospheric CO2 concentration over the past two millennia: Contribution of climate variability, land-use and Southern Ocean dynamics. Climate Dynamics 58 (11-12):2957–79. doi: 10.1007/s00382-021-06078-z.
  • Goudriaan, J., and H. E. de Ruiter. 1983. Plant growth in response to CO2 enrichment, at two levels of nitrogen and phosphorus supply. 1. Dry matter, leaf area and development. Wagenigen Journal of Life Science 31:157–69.
  • Grama, A., D. S. C. Wright, P. J. Cressey, and T. Lindley. 1987. Hexaploid wild emmer wheat derivatives grown under New Zealand conditions 1. Relationship between protein composition and quality parameters. New Zealand Journal of Agricultural Research 30 (1):35–43. doi: 10.1080/00288233.1987.10430475.
  • Greenwood, D. J., G. Lemaire, G. Gosse, P. Cruz, A. Draycott, and J. J. Neeteson. 1990. Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany 66 (4):425–36. doi: 10.1093/oxfordjournals.aob.a088044.
  • Gregory, P. J., J. A. Palta, and G. R. Batts. 1995. Root systems and root: mass ratio – Carbon allocation under current and projected atmospheric conditions in arable crops. Plant and Soil 187 (2):221–8. www.jstor.org/stable/42947907. doi: 10.1007/BF00017089.
  • Hatfield, J. L., and C. L. Walthall. 2015. Meeting global food needs: Realizing the potential via genetics × environment × management interactions. Agronomy Journal 107 (4):1215–26. doi: 10.2134/agronj15.0076.
  • Hocking, P. J., and C. P. Meyer. 1991a. Carbon dioxide enrichment decreases critical nitrate and nitrogen concentrations in wheat. Journal of Plant Nutrition 14 (6):571–84. doi: 10.1080/01904169109364225.
  • Hocking, P. J., and C. P. Meyer. 1991b. Effects of CO2 enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize. Functional Plant Biology 18 (4):339–56. doi: 10.1071/PP9910339.
  • Högy, P., H. Wieser, P. Köhler, K. Schwadorf, J. Breuer, J. Franzaring, R. Muntifering, and A. Fangmeier. 2009. Effects of elevated CO2 on grain yield and quality of wheat: Results from a 3-year free-air CO2 enrichment experiment. Plant Biology 11 (s1):60–9. doi: 10.1111/j.1438-8677.2009.00230.x.
  • IPCC. 2014. Carbon dioxide: Projected emissions and concentrations. https://www.ipcc-data.org/observ/ddc_co2.html.
  • Jones, P., L. H. Allen, Jr., J. W. Jones, K. J. Boote, and W. J. Campbell. 1984. Soybean canopy growth, photosynthesis, and transpiration responses to whole-season carbon dioxide enrichment. Agronomy Journal 76 (4):633–7. doi: 10.2134/agronj1984.00021962007600040030x.
  • Kimball, B. A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agronomy Journal 75 (5):779–88. doi: 10.2134/agronj1983.00021962007500050014x.
  • Lemaire, G., and F. Gastal. 2009. Quantifying crop responses to nitrogen deficiency and avenues to improve nitrogen use efficiency. In Crop physiology: Application of genetic improvement and agronomy, ed. V. Sadras and D. F. Calderini, 171–211. New York, USA: Elsevier. doi: 10.1016/B978-0-12-417104-6.00008-X.
  • Li, Z., K. Yagi, H. Sakai, and K. Kobayashi. 2004. Influence of elevated CO2 and nitrogen nutrition on rice plant growth, soil microbial biomass, dissolved organic carbon and dissolved CH4. Plant and Soil 258 (1):81–90. doi: 10.1023/B:PLSO.0000016538.28110.d8.
  • Loladze, I. 2014. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3: E 02245. doi: 10.7554/eLife.02245.
  • Long, F. N. J., E. A. Ainsworth, A. Rogers, and D. R. Ort. 2004. Rising atmospheric carbon dioxide: Plants FACE the future. Annual Review of Plant Biology 55 (1):591–628. doi: 10.1146/annurev.arplant.55.031903.141610.
  • Manderscheid, R., J. Bender, H. J. Jäger, and H. J. Weigel. 1995. Effects of season long CO2 enrichment on cereals. II. Nutrient concentrations and grain quality. Agriculture, Ecosystems & Environment 54 (3):175–85. doi: 10.1016/0167-8809(95)00602-O.
  • Maphosa, L., G. J. Fitzgerald, J. Panozzo, D. Partington, C. Walker, and S. Kant. 2019. Genotypic response of wheat under semi-arid conditions showed no specific responsive traits when grown under elevated CO2. Plant Production Science 22 (3):333–44. doi: 10.1080/1343943X.2019.1626254.
  • McGrath, J. M., and D. B. Lobell. 2013. Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant, Cell & Environment 36 (3):697–705. doi: 10.1111/pce.12007.
  • Mengel, K., E. A. Kirkby, H. Kosegarten, and T. Appel. 2001. Principles of plant nutrition. 5th ed. Dordrecht, Netherlands: Kluwer Academic.
  • Muchow, R. 1988. Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi arid Tropical environment. I. Leaf growth and leaf nitorgen. Field Crops Research 18 (1):1–16. doi: 10.1016/0378-4290(88)90055-X.
  • NOAA. 2022. Trends in atmospheric carbon dioxide. Global Monitoring Laboratory. https://gml.noaa.gov/ccgg/trends/
  • Norby, R. J., and Y. Luo. 2004. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytologist 162 (2):281–93. doi: 10.1111/j.1469-8137.2004.01047.x.
  • Ragab, S. M. 1979. Effect of potassium fertilizer on cation uptake and concentration in oat shoots. The Journal of Agricultural Science 92 (3):537–44. doi: 10.1017/S0021859600053776.
  • Raper, C. D., Jr., and W. T. Smith. 1975. Factors affecting the development of flue-cured tobacco grown in artificial environments. V. Effects of humidity and nitrogen nutrition. Agronomy Journal 67 (3):307–12. doi: 10.2134/agronj1975.00021962006700030007x.
  • Reddecliffe, T. M., D. J. Moot, D. R. Wilsn, and W. R. Scott. 2000. Grain yield and quality of two durum wheat cultivars grown in Canterbury. Agronomy New Zealand 30:77–82.
  • Ritchie, J. T., U. Singh, D. C. Godwin, and W. T. Bowen. 1998. Cereal growth, development and yield. In Understanding Options for Agricultural Production. Systems Approaches for Sustainable Agricultural Development, ed. G. Y. Tsuji, G. Hoogenboom and P. K. Thornton, vol. 7, 79–98. Dordrecht, Netherlands: SpringerLink. doi: 10.1007/978-94-017-3624-4_5.
  • Rogers, H., S. Prior, G. B. Runion, and R. Mitchell. 1995. Root to shoot ratio of crops as influenced by CO2. Plant and Soil 187 (2):229–48. doi: 10.1007/BF00017090.
  • Sionit, N. 1983. Response of soybean to two levels of mineral nutrition in CO2‐enriched atmosphere. Crop Science 23 (2):329–33. doi: 10.2135/cropsci1983.0011183X002300020035x.
  • Sionit, N., D. A. Mortensen, B. R. Strain, and H. Hellmers. 1981. Growth response of wheat to CO2 enrichment and different levels of mineral nutrition. Agronomy Journal 73 (6):1023–7. doi: 10.2134/agronj1981.00021962007300060027x.
  • Taub, D. R., and X. Wang. 2008. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. Journal of Integrative Plant Biology 50 (11):1365–74. doi: 10.1111/j.1744-7909.2008.00754.x.
  • Uddin, S., M. Löw, S. Parvin, G. J. Fitzgerald, S. Tausz-Posch, R. Armstrong, G. O'Leary, and M. Tausz. 2018. Elevated [CO2] mitigates the effect of surface drought by stimulating root growth to access sub-soil water. PloS One 13 (6):e0198928. doi: 10.1371/journal.pone.0198928.
  • Walters, M. B., and P. B. Reich. 1989. Response of Ulmus americana seedlings to varying nitrogen and water status. 1 Photosynthesis and growth. Tree Physiology 5 (2):159–72. doi: 10.1093/treephys/5.2.159.
  • Wong, S. C. 1979. Elevated atmospheric partial pressure of CO2 and plant growth: I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants. Oecologia 44 (1):68–74. doi: 10.1007/BF00346400.
  • Xu, M. 2015. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum). Journal of Plant Physiology 184:89–97. doi: 10.1016/j.jplph.2015.07.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.