106
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Impacts of ZnO nanoparticles and dissolved zinc (ZnSO4) on low temperature induced responses of wheat

, , &
Pages 3435-3449 | Received 30 Aug 2022, Accepted 18 Apr 2023, Published online: 04 May 2023

References

  • Amezaga-Madrid, P., R. Silveyra-Morales, L. Cordoba-Fierro, G. V. Nevarez- Moorillon, M. Miki-Yoshida, E. Orrantia-Borunda, and F. J. Solís. 2003. TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films. Journal of Photochemistry and Photobiology. B, Biology 70 (1):45–50.
  • Arbona, V., Z. Hossain, M. F. López-Climent, R. M. Pérez-Clemente, and A. Gómez-Cadenas. 2008. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiologia Plantarum 132 (4):452–66. doi: 10.1111/j.1399-3054.2007.01029.x.
  • Baek, K. H., and D. Z. Skinner. 2003. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Science 165 (6):1221–7. doi: 10.1016/S0168-9452(03)00329-7.
  • Beegam, A., P. Prasad, J. Jose, M. Oliveira, F. G. Costa, A. Soares, P. Gonçalves, T. Trindade, N. Kalarikkal, S. Thomas, et al. 2016. Environmental fate of zinc oxide nanoparticles: risks and benefits. In Toxicology: New aspects to this scientific conundrum, ed. Sonia Soloneski and Marcelo L. Larramendy, IntechOpen, doi: 10.5772/65266.Available from: https://www.intechopen.com/books/toxicology-new-aspects-to-this-scientific-conundrum/environmental-fate-of-zinc-oxide-nanoparticles-risks-and-benefits.
  • Beyer, W. F., and I. Fridovich. 1987. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry 161 (2):559–66. doi: 10.1016/0003-2697(87)90489-1.
  • Brunner, T. J., P. Wick, P. Manser, P. Spohn, R. N. Grass, L. K. Limbach, A. Bruinink, and W. J. Stark. 2006. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environmental Science & Technology 40 (14):4374–81. doi: 10.1021/es052069i.
  • Das, K., and A. Roychoudhury. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2:53. doi: 10.3389/fenvs.2014.00053.
  • Dimkpa, C. O., J. E. McLean, D. E. Latta, E. Manangón, D. W. Britt, W. P. Johnson, M. I. Boyanov, and A. J. Anderson. 2012. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand- grown wheat. Journal of Nanoparticle Research 14 (9):1–15. doi: 10.1007/s11051-012-1125-9
  • Du, W., J. Yang, Q. Peng, X. Liang, and H. Mao. 2019. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 227:109–16. doi: 10.1016/j.chemosphere.2019.03.168.
  • Dubchak, S., A. Ogar, J. W. Mietelski, and K. Turnau. 2010. Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Spanish Journal of Agricultural Research 8 (S1):103–8. doi: 10.5424/sjar/201008S1-1228.
  • El-Sharkawy, M., E. Mahmoud, M. Abd El-Aziz, and T. Khalifa. 2022. Effect of zinc oxide nanoparticles and soil amendments on wheat yield, physiological attributes and soil properties grown in the saline: Sodic soil. Communications in Soil Science and Plant Analysis 53 (17):2170–86. doi: 10.1080/00103624.2022.2070635.
  • Gill, S. S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry: PPB 48 (12):909–30. doi: 10.1016/j.plaphy.2010.08.016.
  • Goswami, A., I. Roy, S. Sengupta, and N. Debnath. 2010. Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films.519 (3):1252–7. doi: 10.1016/j.tsf.2010.08.079.
  • Guy, C. L. 1990. Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 41 (1):187–223. doi: 10.1146/annurev.pp.41.060190.001155.
  • Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125 (1):189–98. doi: 10.1016/0003-9861(68)90654-1.
  • Hernandez, J. A., and M. S. Almansa. 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum 115 (2):251–7. doi: 10.1034/j.1399-3054.2002.1150211.x.
  • Hong, S., P. R. Leroueil, E. K. Janus, J. L. Peters, M. M. Kober, M. T. Islam, B. G. Orr, J. R. Baker, and M. M. Banaszak Holl. 2006. Interaction of polycationic polymers with supported lipid bilayers and cells: Nanoscale hole formation and enhanced membrane permeability. Bioconjugate Chemistry 17 (3):728–34. doi: 10.1021/bc060077y.
  • Huang, Z., X. Zhang, S. Jiang, M. Qin, N. Zhao, L. Lang, Y. Liu, Z. Tian, X. Liu, Y. Wang, et al. 2017. Analysis of cold resistance and identification of SSR markers linked to cold resistance genes in Brassica rapa L. Breeding Science 67 (3):213–20. doi: 10.1270/jsbbs.16161.
  • Ivask, A., K. Juganson, O. Bondarenko, M. Mortimer, V. Aruoja, K. Kasemets, I. Blinova, M. Heinlaan, V. Slaveykova, and A. Kahru. 2014. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: A comparative review. Nanotoxicology 8 (sup1):57–71. doi: 10.3109/17435390.2013.855831.
  • Kah, M., and T. Hofmann. 2014. Nanopesticide research: Current trends and future priorities. Environment International 63:224–35. doi: 10.1016/j.envint.2013.11.015.
  • Kendall, E. J., and B. D. McKersie. 1989. Free radical and freezing injury to cell membranes of winter wheat. Physiologia Plantarum 76 (1):86–94. doi: 10.1111/j.1399-3054.1989.tb05457.x.
  • Kim, S. I., and T. H. Tai. 2011. Evaluation of seedling cold tolerance in rice cultivars: A comparison of visual ratings and quantitative indicators of physiological changes. Euphytica 178 (3):437–47. doi: 10.1007/s10681-010-0343-4.
  • Kumari, M., S. S. Khan, S. Pakrashi, A. Mukherjee, and N. Chandrasekaran. 2011. Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. Journal of Hazardous Materials 190 (1–3):613–21. doi: 10.1016/j.jhazmat.2011.03.095.
  • Lee, D. H., and C. B. Lee. 2000. Chilling stress induced changes of antioxidant enzymes in the leaves of cucumber: In gel enzyme activity assays. Plant Science: An International Journal of Experimental Plant Biology 159 (1):75–85. doi: 10.1016/s0168-9452(00)00326-5.
  • Lin, D., and B. Xing. 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root elongation. Environmental Pollution (Barking, Essex: 1987) 150 (2):243–50. doi: 10.1016/j.envpol.2007.01.016.
  • Ma, C. X., J. C. White, O. P. Dhankher, and B. Xing. 2015. Metal-based nanotoxicity and detoxification pathways in higher plants. Environmental Science & Technology 49 (12):7109–22. doi: 10.1021/acs.est.5b00685.
  • Ma, C., H. Liu, H. Guo, C. Musante, S. H. Coskun, B. C. Nelson, J. C. White, B. Xing, and O. P. Dhankher. 2016. Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environmental Science: Nano 3 (6):1369–79. doi: 10.1039/C6EN00189K.
  • Ma, H., P. L. Williams, and S. A. Diamond. 2013. Ecotoxicity of manufactured ZnO nanoparticles – A review. Environmental Pollution (Barking, Essex: 1987) 172:76–85. doi: 10.1016/j.envpol.2012.08.011.
  • Malea, P., K. Charitonidou, I. Sperdouli, Z. Mylona, and M. Moustakas. 2019. Zinc uptake, photosynthetic efficiency and oxidative stress in the seagrass Cymodocea nodosa exposed to ZnO nanoparticles. Materials 12 (13):2101. doi: 10.3390/ma12132101.
  • Marschner, H. 1995. Mineral plant nutrition of higher plants. Cambridge, MA: Academic Press.
  • McCully, M. E., M. J. Canny, and C. X. Huang. 2004. The management of extracellular ice by frosted, acclimated herbaceous petioles. Annals of Botany 94 (5):665–74. doi: 10.1093/aob/mch191.
  • Menard, A., D. Drobne, and A. Jemec. 2011. Ecotoxicity of nanosized TiO2. Review of in vivo data. Environmental Pollution (Barking, Essex: 1987) 159 (3):677–84. doi: 10.1016/j.envpol.2010.11.027.
  • Mukherjee, A., J. R. Peralta-Videa, S. Bandyopadhyay, C. M. Rico, L. Zhao, and J. L. Gardea-Torresdey. 2014. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics: Integrated Biometal Science 6 (1):132–8. doi: 10.1039/c3mt00064h.
  • Mukherjee, A., Y. Sun, E. Morelius, C. Tamez, S. Bandyopadhyay, G. Niu, J. C. White, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2015. Differential toxicity of bare and hybrid ZnO nanoparticles in green pea (Pisum sativum L.): A life cycle study. Frontiers in Plant Science 6:1242. doi: 10.3389/fpls.2015.01242.
  • Mukhopadhyay, S. S., and N. Kaur. 2016. Nanotechnology in soil-plant system. In Plant Nanotechnology, eds. C. Kole, D. Kumar, and M. Khodakovskaya, Cham: Springer.
  • Narwal, S. S., R. Bogatek, B. M. Zagdanska, D. A. Sampietro, and M. A. Vattuone. 2009. Plant biochemistry. Studium Press LLC, Texas.
  • Pearce, R. S. 1988. Extracellular ice and cell shape in frost- stressed cereal leaves: A low-temperature scanning- electron-microscopy study. Planta 175 (3):313–24. doi: 10.1007/BF00396336.
  • Pokhrel, L. R., and B. Dubey. 2013. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Science of the Total Environment 452-453 (0):321–32. doi: 10.1016/j.scitotenv.2013.02.059.
  • Prasad, T. K. 1997. Role of catalase in inducing chilling tolerance in pre- emergent maize seedlings. Plant Physiology 114 (4):1369–76. doi: 10.1104/pp.114.4.1369.
  • Prasad, T. K., M. D. Anderson, B. A. Martin, and C. R. Stewart. 1994. Evidence for chilling-induced oxidative stress in maize seedling and a regulatory role for hydrogen peroxide. The Plant Cell 6 (1):65–74. doi: 10.2307/3869675.
  • Rai, M., and A. Ingle. 2012. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology 94 (2):287–93. doi: 10.1007/s00253-012-3969-4.
  • Rajput, V., T. Minkina, S. Sushkova, A. Behal, A. Maksimov, E. Blicharska, K. Ghazaryan, H. Movsesyan, and N. Barsova. 2020. ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environmental Geochemistry and Health 42 (1):147–58. doi: 10.1007/s10653-019-00317-3.
  • Rizwan, M., S. Ali, M. F. Qayyum, Y. S. Ok, M. Adrees, M. Ibrahim, M. Zia-Ur-Rehmand, M. Farid, and F. Abbas. 2017. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of Hazardous Materials 322 (Pt A):2–16. doi: 10.1016/j.jhazmat.2016.05.061.
  • Serpone, N., D. Dondi, and A. Albini. 2007. Inorganic and organic UV filters: Their role and efficacy in sunscreens and sun care products. Inorganica Chimica Acta 360 (3):794–802. doi: 10.1016/j.ica.2005.12.057.
  • Sharma, P., A. B. Jha, R. S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:1–26. doi: 10.1155/2012/217037.
  • Sun, L., F. Song, X. Zhu, S. Liu, F. Liu, Y. Wang, and X. Li. 2021. Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Archives of Agronomy and Soil Science 67 (2):245–59. doi: 10.1080/03650340.2020.1723003.
  • Thunugunta, T., A. Channa Reddy, S. Kodthalu Seetharamaiah, L. Ramanna Hunashikatti, S. Gowdra Chandrappa, N. Cherukatu Kalathil, and L. R. Dhoranapalli Chinnappa Reddy. 2018. Impact of Zinc oxide nanoparticles on eggplant (S. melongena): Studies on growth and the accumulation of nanoparticles. IET Nanobiotechnology 12 (6):706–13. doi: 10.1049/iet-nbt.2017.0237.
  • Valant, J., D. Drobne, K. Sepcić, A. Jemec, K. Kogej, and R. Kostanjsek. 2009. Hazardous potential of manufactured nanoparticles identified by in vivo assay. Journal of Hazardous Materials 171 (1-3):160–5. doi: 10.1016/j.jhazmat.2009.05.115.
  • Yamazaki, J. Y., A. Ohashi, Y. Hashimoto, E. Negishi, S. Kumagai, T. Kubo, T. Oikawa, E. Maruta, and Y. Kamimura. 2003. Effects of high light and low temperature during harsh winter on needle photodamage of Abies mariesii growing at the forest limit on Mt. Norikura in Central Japan. Plant Science 165 (1):257–64. doi: 10.1016/S0168-9452(03)00169-9.
  • Yong, Z., T. Haoru, and L. Ya. 2008. Variation in antioxidant enzyme activities of two strawberry cultivars with short-term low temperature stress. World Journal of Agricultural Sciences 4:458–62.
  • Zhang, P., Y. Ma, S. Liu, G. Wang, J. Zhang, X. He, J. Zhang, Y. Rui, and Z. Zhang. 2017. Phytotoxicity, uptake and transformation of nano-CeO2 in sand cultured romaine lettuce. Environmental Pollution (Barking, Essex: 1987) 220 (Pt B):1400–8. doi: 10.1016/j.envpol.2016.10.094.
  • Zhang, W., S. D. Ebbs, C. Musante, J. C. White, C. Gao, and X. Ma. 2015. Uptake and Accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.). Journal of Agricultural and Food Chemistry 63 (2):382–90. doi: 10.1021/jf5052442.
  • Zou, W., Y. Chen, and C. Lu. 2007. Differences in biochemical responses to cold stress in two contrasting varieties of rapeseed (Brassica napus L.). Forestry Studies in China 9 (2):142–6. doi: 10.1007/s11632-007-0022-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.