265
Views
2
CrossRef citations to date
0
Altmetric
Review

Understanding the beneficial interaction of plant growth promoting rhizobacteria and endophytic bacteria for sustainable agriculture: a bio-revolution approach

&
Pages 3569-3597 | Received 17 Sep 2021, Accepted 18 Apr 2023, Published online: 04 May 2023

References

  • Adam, E., M. Bernhart, H. Müller, J. Winkler, and G. Berg. 2018. The Cucurbita pepo seed microbiome: Genotype-specific composition and implications for breeding. Plant and Soil 422 (1–2):35–49. doi: 10.1007/s11104-016-3113-9.
  • Aguado-Santacruz, G. A., B. Moreno-G’omez, B. Jim’enez-Francisco, E. Garc’ıa-Moya, and R. E. Preciado-Ortiz. 2012. Impact of the microbial siderophores and phytosiderophores on the iron assimilation by plants: A synthesis. Revista Fitotecnia Mexicana 35 (1):9–21. doi: 10.35196/rfm.2012.1.9.
  • Ahemad, M., and M. Kibret. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science 26 (1):1–20. doi: 10.1016/j.jksus.2013.05.001.
  • Ahmadi, K., B. S. Razavi, M. Maharjan, Y. Kuzyakov, S. J. Kostka, A. Carminati, and M. Zarebanadkouki. 2018. Effects of rhizosphere wettability on microbial biomass, enzyme activities and localization. Rhizosphere 7:35–42. doi: 10.1016/j.rhisph.2018.06.010.
  • Al-Fakih, A. A. 2014. Overview on the fungal metabolites involved in mycopathy. Open Journal of Medical Microbiology 04 (01):38–63. doi: 10.4236/ojmm.2014.41006.
  • Ali, S., T. C. Charles, and B. R. Glick. 2014. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry : PPB 80:160–7. doi: 10.1016/j.plaphy.2014.04.003.
  • Ali, S. S., and N. N. Vidhale. 2013. Bacterial siderophore and their application: A review. International Journal of Current Microbiology and Applied Sciences 2 (12):303–12.
  • Alvin, A., K. I. Miller, and B. A. Neilan. 2014. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiological Research 169 (7-8):483–95. doi: 10.1016/j.micres.2013.12.009.
  • Archana, S., K. Prabakar, T. Raguchander, M. Hubbali, P. Valamarthi, and V. Prakasham. 2011. Defence responses of Grapevine to Plasmopara viticola Induced by Azoxystrobin and Pseudomonas fluorescence. International Journal of Sustainable Agriculture 3:30–8.
  • Aznar, A., N. W. Chen, S. Thomine, and A. Dellagi. 2015. Immunity to plant pathogens and iron homeostasis. Plant Science : An International Journal of Experimental Plant Biology 240:90–7. doi: 10.1016/j.plantsci.2015.08.022.
  • Azziz, G., N. Bajsa, T. Haghjou, C. Taulé, Á. Valverde, J. M. Igual, and A. Arias. 2012. Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay. Applied Soil Ecology 61:320–6. doi: 10.1016/j.apsoil.2011.10.004.
  • Babalola, O. O., and B. R. Glick. 2012. The use of microbial inoculants in African agriculture: Current practice and future prospects. Journal of Food Agriculture and Environment 10:540–9.
  • Bacon, C. W., and J. F. White. 2016. Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants. Symbiosis 68 (1–3):87–98. doi: 10.1007/s13199-015-0350-2.
  • Baker, N. R., B. Khalili, J. B. Martiny, and S. D. Allison. 2018. Microbial decomposers not constrained by climate history along a Mediterranean climate gradient in southern California. Ecology 99 (6):1441–52. doi: 10.1002/ecy.2345.
  • Baker, K. F., and S. H. Smith. 1966. Dynamics of seed transmission of plant pathogens. Annual Review of Phytopathology 4 (1):311–32. doi: 10.1146/annurev.py.04.090166.001523.
  • Bal, H. B., L. Nayak, S. Das, and T. K. Adhya. 2013. Isolation of ACC deaminase PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant and Soil 366 (1–2):93–105. doi: 10.1007/s11104-012-1402-5.
  • Baldani, J. I., and V. L. Baldani. 2005. History on the biological nitrogen fixation research in graminaceous plants: Special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ciencias 77 (3):549–79. doi: 10.1590/s0001-37652005000300014.
  • Baldotto, L. E. B., F. L. Olivares, and R. Bressan-Smith. 2011. Structural interaction between GFP-labeled diazotrophic endophytic bacterium Herbaspirillum seropedicae RAM10 and pineapple plantlets “Vitória. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology] 42 (1):114–25. doi: 10.1590/S1517-83822011000100015.
  • Bhore, S. J., N. Ravichantar, and C. Y. Loh. 2010. Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation 5 (5):191–7. doi: 10.6026/97320630005191.
  • Bogdan, A. R., M. Miyazawa, K. Hashimoto, and Y. Tsuji. 2016. Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends in Biochemical Sciences 41 (3):274–86. doi: 10.1016/j.tibs.2015.11.012.
  • Bordiec, S., S. Paquis, H. Lacroix, S. Dhondt, E. Ait Barka, S. Kauffmann, P. Jeandet, F. Mazeyrat-Gourbeyre, C. Clement, F. Baillieul, et al. 2011. Comparative analysis of defense responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. Journal of Experimental Botany 62 (2):595–603. doi: 10.1093/jxb/erq291.
  • Camerini, S., B. Senatore, E. Lonardo, E. Imperlini, C. Bianco, G. Moschetti, G. L. Rotino, B. Campion, and R. Defez. 2008. Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Archives of Microbiology 190 (1):67–77. doi: 10.1007/s00203-008-0365-7.
  • Cassán, F., D. Perrig, V. Sgroy, O. Mas-Ciarelli, C. Penna, and V. Luna. 2009. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn(Zea mays L.) and soybean(Glycinemax L.). European Journal of Soil Biology 45 (1):28–35. doi: 10.1016/j.ejsobi.2008.08.005.
  • Chadha, N., M. Mishra, K. Rajpal, R. Bajaj, D. K. Choudhary, and A. Varma. 2015. An ecological role of fungal endophytes to ameliorate plants under biotic stress. Archives of Microbiology 197 (7):869–81. doi: 10.1007/s00203-015-1130-3.
  • Chakraborty, U., B. N. Chakraborty, M. Basnet, and A. P. Chakraborty. 2009. Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. Journal of Applied Microbiology 107 (2):625–34. doi: 10.1111/j.1365-2672.2009.04242.x.
  • Chalotra, R. A., S. A. Mallick, M. O. Gupta, D. Sharma, and S. A. Gupta. 2019. Production of cell wall degrading enzymes and antibiotic by Pseudomonads for assessing their biocontrol potential. Indian Journal of Agricultural Sciences 89:994–7.
  • Chang, W. T., Y. C. Chen, and C. L. Jao. 2007. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresource Technology 98 (6):1224–30. doi: 10.1016/j.biortech.2006.05.005.
  • Chang, W. T., C. S. Chen, and S. L. Wang. 2003. An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source. Current Microbiology 47 (2):102–8. doi: 10.1007/s00284-002-3955-7.
  • Chebotar, V., N. Malfanova, A. Shcherbakov, G. Ahtemova, A. Y. Borisov, B. Lugtenberg, and I. Tikhonovich. 2015. Endophytic bacteria in microbial preparations that improve plant development. Applied Biochemistry and Microbiology 51 (3):271–7. doi: 10.1134/S0003683815030059.
  • Chet, I., A. Ordentlich, R. Shapira, and A. Oppenheim. 1990. Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant and Soil 129 (1):85–92. doi: 10.1007/BF00011694.
  • Colombo, C., G. Palumbo, J. Z. He, R. Pinton, and S. Cesco. 2014. Review on iron availability in soil: Interaction of Fe minerals, plants and microbes. Journal of Soils and Sediments 14 (3):538–48. doi: 10.1007/s11368-013-0814-z.
  • Compant, S., B. Duffy, J. Nowak, C. Clément, and E. A. Barka. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology 71 (9):4951–9. doi: 10.1128/AEM.71.9.4951-4959.2005.
  • Compant, S., H. Kaplan, A. Sessitsch, J. Nowak, E. Ait Barka, and C. Clément. 2008. Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: From the rhizosphere to inflorescence tissues. FEMS Microbiology Ecology 63 (1):84–93. doi: 10.1111/j.1574-6941.2007.00410.x.
  • Compant, S., B. Mitter, J. G. Colli-Mull, H. Gangl, and A. Sessitsch. 2011. Endophytes of grapevine flowers, berries, and seeds: Identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbial Ecology 62 (1):188–97. doi: 10.1007/s00248-011-9883-y.
  • Conn, V. M., A. Walker, and C. Franco. 2008. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Molecular Plant-Microbe Interactions : MPMI 21 (2):208–18. doi: 10.1094/MPMI-21-2-0208.
  • Cortleven, A., and T. Schmülling. 2015. Regulation of chloroplast development and function by cytokinin. Journal of Experimental Botany 66 (16):4999–5013. doi: 10.1093/jxb/erv132.
  • Das, A. J., M. Kumar, and R. Kumar. 2013. Plant growth promoting rhizobacteria (PGPR): An alternative of chemical fertilizer for sustainable, environment friendly agriculture. Research Journal of Agricultural for Sciences 1 (4):21–3.
  • David, P., R. S. Raj, R. Linda, and S. B. Rhema. 2014. Molecular characterization of phosphate solubilizing bacteria (PSB) and plant growth promoting rhizobacteria (PGPR) from pristine soils. International Journal of Innovative Science Engineering and Technology 1:317–24.
  • De Hita, D., M. Fuentes, A. M. Zamarreño, Y. Ruiz, and J. M. Garcia-Mina. 2020. Culturable bacterial endophytes from sedimentary humic acid-treated plants. Frontiers in Plant Science 11:837. doi: 10.3389/fpls.2020.00837.
  • de Souza, R., A. Ambrosini, and L. M. P. Passaglia. 2015. Plant growthpromoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology 38 (4):401–19. doi: 10.1590/S1415-475738420150053.
  • de Vrieze, J. 2015. The littlest farmhands. Science (New York, N.Y.) 349 (6249):680–3. doi: 10.1126/science.349.6249.680.
  • Dent, D., and E. Cocking. 2017. Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: The Greener Nitrogen Revolution. Agriculture Food Security 6 (1):1–9.
  • Dertz, E. A., J. Xu, A. Stintzi, and K. N. Raymond. 2006. Bacillibactin-mediated iron transport in Bacillussubtilis. Journal of the American Chemical Society 128 (1):22–3. doi: 10.1021/ja055898c.
  • Dias, A. C., F. E. Costa, F. D. Andreote, P. T. Lacava, M. A. Teixeira, L. C. Assumpção, W. L. Araújo, J. L. Azevedo, and I. S. Melo. 2009. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World Journal of Microbiology and Biotechnology 25 (2):189–95. doi: 10.1007/s11274-008-9878-0.
  • Disi, J. O., H. K. Mohammad, K. Lawrence, J. Kloepper, and H. Fadamiro. 2019. A soil bacterium can shape belowground interactions between maize, herbivores and entomopathogenic nematodes. Plant and Soil 437 (1–2):83–92. doi: 10.1007/s11104-019-03957-7.
  • Dodds, P. N., and J. P. Rathjen. 2010. Plant immunity: Towards an integrated view of plant-pathogen interactions. Nature Reviews. Genetics 11 (8):539–48. doi: 10.1038/nrg2812.
  • Edwards, J., C. Johnson, C. Santos-Medellín, E. Lurie, N. K. Podishetty, S. Bhatnagar, J. A. Eisen, and V. Sundaresan. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy Sciences of United States of America 112 (8):E911–E920.
  • Elbeltagy, A., K. Nishioka, T. Sato, H. Suzuki, B. Ye, T. Hamada, T. Isawa, H. Mitsui, and K. Minamisawa. 2001. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Applied and Environmental Microbiology 67 (11):5285–93. doi: 10.1128/AEM.67.11.5285-5293.2001.
  • Enthaler, S., K. Junge, and M. Beller. 2008. Sustainable metal catalysis with iron: From rust to a rising star? Angewandte Chemie (International ed. in English) 47 (18):3317–21. doi: 10.1002/anie.200800012.
  • Etesami, H., H. A. Alikhani, and H. M. Hosseini. 2015. Indole- 3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: Bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria. In Bacterial metabolitesin sustainable agroecosystem, ed. D. K. Maheshwari, 183–258. Cham: Springer International Publishing Switzerland. doi: 10.1007/978-3-319-24654-3_8.
  • Falkowski, P. G., H. Z. Lin, and M. Y. Gorbunov. 2017. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans. Philosophical Transactions of the Royal Society B: Biological Sciences 372 (1730):20160376. doi: 10.1098/rstb.2016.0376.
  • Fardeau, S., C. Mullie, A. Dassonville-Klimpt, N. Audic, and P. Sonnet. 2011. Bacterial iron uptake: A promising solution against multidrug resistant bacteria. In Science against microbial pathogens: Communicating current research and technological advances, 695–705.
  • Fernández Bidondo, L., V. Silvani, R. Colombo, M. Pérgola, J. Bompadre, and A. Godeas. 2011. Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biology and Biochemistry 43 (9):1866–72. doi: 10.1016/j.soilbio.2011.05.004.
  • Ferreira, M. J., H. Silva, and A. Cunha. 2019. Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: A review. Pedosphere 29 (4):409–20. doi: 10.1016/S1002-0160(19)60810-6.
  • Galippe, V. 1887. Note sur la présence de micro-organismes dans les tissus végétaux. Comptes Rendus Hebdomadaires de la Société de Biologie Paris 36:410–6.
  • Gamalero, E., and B. R. Glick. 2015. Bacterial modulation of plant ethylene levels. Plant Physiology 169 (1):13–22. doi: 10.1104/pp.15.00284.
  • Gamit, D. A., and S. K. Tank. 2014. Effect of siderophore producing microorganism on plant growth of Cajanus cajan (Pigeon pea). International Journal of Research in Pure and Applied Microbiology 4:20–7.
  • Glick, B. R. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012:1–15. doi: 10.6064/2012/963401.
  • Glick, B. R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research 169 (1):30–9. doi: 10.1016/j.micres.2013.09.009.
  • Goldstein, A. H. 1994. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In Phosphate in microorganisms: Cellular and molecular biology, ed. A. Gorini, A. Torrini, E. Yagil, S. Silver, 197–203. Washington: ASM Press.
  • Goswami, D., J. N. Thakker, and P. C. Dhandhukia. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agriculture 2 (1):1127500.
  • Gravel, V., H. Antoun, and R. J. Tweddell. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biology and Biochemistry 39 (8):1968–77. doi: 10.1016/j.soilbio.2007.02.015.
  • Grobelak, A., and J. Hiller. 2017. Bacterial siderophores promote plant growth: Screening of catechol and hydroxamate siderophores. International Journal of Phytoremediation 19 (9):825–33. doi: 10.1080/15226514.2017.1290581.
  • Hallenbeck PC, ed. 2017. Modern topics in the phototrophic prokaryotes: Metabolism, bioenergetics and omics. Cham, Switzerland: Springer International Publishing.
  • Han, Y., R. Wang, Z. Yang, Y. Zhan, Y. Ma, S. Ping, L. Zhang, M. Lin, and Y. Yan. 2015. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. Journal of Microbiology and Biotechnology 25 (7):1119–28. doi: 10.4014/jmb.1412.12053.
  • Hardoim, P. R., L. S. van Overbeek, G. Berg, A. M. Pirttilä, S. Compant, A. Campisano, M. Döring, and A. Sessitsch. 2015. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews : MMBR 79 (3):293–320. doi: 10.1128/MMBR.00050-14.
  • Hassan, M. K., J. A. McInroy, J. Jones, D. Shantharaj, M. R. Liles, and J. W. Kloepper. 2019. Pectin-rich amendment enhances soybean growth promotion and nodulation mediated by Bacillusvelezensis strains. Plants 8 (5):120. doi: 10.3390/plants8050120.
  • Hedden, P., and A. L. Phillips. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends in Plant Science 5 (12):523–30. doi: 10.1016/S1360-1385(00)01790-8.
  • Hiltner, L. 1904. Über neuere Erfahrungen und Probleme auf dem Gebiete de Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Soil Biology and Biochemistry 98:59–78.
  • Huang, C. J., T. K. Wang, S. C. Chung, and C. Y. Chen. 2005. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. Journal of Biochemistry and Molecular Biology 38 (1):82–8. doi: 10.5483/bmbrep.2005.38.1.082.
  • Hu, X. Y., M. T. Page, A. Sumida, A. Tanaka, M. J. Terry, and R. Tanaka. 2017. The iron-sulfur cluster biosynthesis protein SUFB is required for chlorophyll synthesis, but not phytochrome signaling. The Plant Journal : For Cell and Molecular Biology 89 (6):1184–94. doi: 10.1111/tpj.13455.
  • Hu, Y., and M. W. Ribbe. 2016. Biosynthesis of the metalloclusters of nitrogenases. Annual Review of Biochemistry 85:455–83. doi: 10.1146/annurev-biochem-060614-034108.
  • Islam, S., A. M. Akanda, A. Prova, M. T. Islam, and M. M. Hossain. 2016. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology 6 (1360):1360. doi: 10.3389/fmicb.2015.01360.
  • Istina, IN., H. Widiastuti, B. Joy, and M. Antralina. 2015. Phosphatesolubilizing microbe from Saprists peat soil and their potency to enhance oil palm growth and P uptake. Procedia Food Science 3:426–35. doi: 10.1016/j.profoo.2015.01.047.
  • Jadhav, H. P., S. S. Shaikh, and R. Z. Sayyed. 2017. Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: An overview. In Rhizotrophs: Plant Growth Promotion to Bioremediation, Microorganisms for Sustainability, ed. S. Mehnaz, 183. Singapore: Springer Nature Pte Ltd.
  • Jain, P., and D. S. Khichi. 2014. Phosphate solubilizing microorganism (PSM): An eco-friendly biofertilizer and pollution manager. Journal of Dynamics in Agricultural Research 1 (4):23–8.
  • Jha, C. K., and M. Saraf. 2015. Plant growth promoting rhizobacteria (PGPR): A review. Journal of Agricultural Reseach and Devevelopment 5 (2):108–19.
  • Jorquera, M. A., M. T. Hernandez, Z. Rengel, P. Marschner, and M. D. Mora. 2008. Isolation of culturable phosphor bacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils 44 (8):1025–34. doi: 10.1007/s00374-008-0288-0.
  • Kang, J., A. Amoozegar, D. Hesterberg, and D. L. Osmond. 2011. Phosphorus leaching in a sandy soil as affected by organic and incomposted cattle manure. Geoderma 161 (3–4):194–201. doi: 10.1016/jgeoderma.2010.12.019.
  • Kang, S.-M., A. L. Khan, M. Hamayun, J. Hussain, G.-J. Joo, Y.-H. You, J.-G. Kim, and I.-J. Lee. 2012. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. Journal of Microbiology (Seoul, Korea) 50 (6):902–9. doi: 10.1007/s12275-012-2273-4.
  • Kang, S. M., A. L. Khan, Y. H. You, J. G. Kim, M. Kamran, and I. J. Lee. 2014. Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. Journal of Microbiology and Biotechnology 24 (1):106–12. doi: 10.4014/jmb.1304.04015.
  • Karthikeyan, B., M. M. Joe, M. R. Islam, and T. Sa. 2012. ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of anti-oxidative defense systems. Symbiosis 56 (2):77–86. doi: 10.1007/s13199-012-0162-6.
  • Khalaf, E. M., and M. N. Raizada. 2016. Taxonomic and functional diversity of cultured seed associatedmicrobes of the cucurbit family. BMC Microbiology 16 (1):131. doi: 10.1186/s12866-016-0743-2.
  • Khan, M. S., A. Zaidi, and E. Ahmad. 2014. Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Phosphate solubilising microorganisms, ed. Khan, 31–62. Switzerland: Springer International Publishing.
  • Kishore, G. K., and S. Pande. 2007. Chitin‐supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Letters in Applied Microbiology 44 (1):98–105. doi: 10.1111/j.1472-765X.2006.02022.x.
  • Köster, W. 2001. ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12? Research in Microbiology 152 (3–4):291–301. doi: 10.1016/s0923-2508(01)01200-1.
  • Kour, D., K. L. Rana, A. N. Yadav, I. Sheikh, V. Kumar, H. S. Dhaliwal, and A. K. Saxena. 2020. Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environmental Sustainability 3 (1):23–34. doi: 10.1007/s42398-020-00094-1.
  • Krause, A., A. Ramakumar, D. Bartels, F. Battistoni, T. Bekel, J. Boch, M. Böhm, F. Friedrich, T. Hurek, L. Krause, et al. 2007. Complete genome of the mutualistic N2-fixing grass endophyte Azoarcus sp. strain BH72. Nature Biotechnology 25 (4):478. doi: 10.1038/nbt1243.
  • Kumar, A. 2016. Phosphate solubilizing bacteria in agriculture biotechnology: Diversity, mechanism and their role in plant growth and crop yield. International Journal of Advanced Research 4 (4):116–24. doi: 10.21474/IJAR01/111.
  • Kumar, V., S. Menon, H. Agarwal, and D. Gopalakrishnan. 2017. Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resource-Efficient Technologies 3 (4):434–9. doi: 10.18799/24056529/2017/4/162.
  • Kumar, A., R. Singh, D. D. Giri, P. K. Singh, and K. D. Pandey. 2014. Effect of Azotobacter chroococcum CL13 inoculation on growth and curcumin content of turmeric (Curcuma longa L.). International Journal of Current Microbiology and Applied Science 3 (9):275–83.
  • Leo, V. V., A. K. Passari, J. B. Joshi, V. K. Mishra, S. Uthandi, N. Ramesh, V. K. Gupta, R. Saikia, V. C. Sonawane, and B. P. Singh. 2016. A novel triculture system (CC3) for simultaneous enzyme production and hydrolysis of common grasses through submerged fermentation. Frontiers in Microbiology 7:447. doi: 10.3389/fmicb.2016.00447.
  • Leong, S. A., and J. B. Neilands. 1982. Siderophore production by phytopathogenic microbial species. Archives of Biochemistry and Biophysics 218 (2):351–9. doi: 10.1016/0003-9861(82)90356-3.
  • Li, Y., Y. Gu, J. Li, M. Xu, Q. Wei, and Y. Wang. 2015. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Frontiers in Microbiology 6:883. doi: 10.3389/fmicb.2015.00883.
  • Links, M. G., T. Demeke, T. Gräfenhan, J. E. Hill, S. M. Hemmingsen, and T. J. Dumonceaux. 2014. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. The New Phytologist 202 (2):542–53. doi: 10.1111/nph.12693.
  • Liu, H., L. C. Carvalhais, P. M. Schenk, and P. G. Dennis. 2017. Effects of jasmonic acid signalling on the wheat microbiome differ between body sites. Scientific Reports 7:41766. doi: 10.1038/srep41766.
  • Lowman, J. S., A. Lava-Chavez, S. Kim-Dura, B. Flinn, J. Nowak, and C. Mei. 2015. Switchgrass field performance on two soils as affected by bacterization of seedlings with Burkholderia phytofirmans strain PsJN. BioEnergy Research 8 (1):440–9. doi: 10.1007/s12155-014-9536-3.
  • Lugtenberg, B., and F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology 63:541–56. doi: 10.1146/annurev.micro.62.081307.162918.
  • Ma, Y., M. Rajkumar, C. Zhang, and H. Freitas. 2016. Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management 174:14–25. doi: 10.1016/j.jenvman.2016.02.047.
  • Mamta, P. R., V. Pathania, A. Gulati, B. Singh, R. K. Bhanwra, and R. Tewari. 2010. Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology 46 (2):222–9., doi: 10.1016/j.apsoil.2010.08.008.
  • Marella, S. 2014. Bacterial endophytes in sustainable crop production: Applications, recent developments and challenges ahead. International Journal Life Science Research 2:46–56.
  • Martinez, C., A. Espinosa-Ruiz, and S. Prat. 2016. Gibberellins and plant vegetative growth. Annual Plant Reviews 49:285–322.
  • Maurer, B., and W. Keller-Schierlein. 1968. Ferribactin, a Siderochrome from Pseudomonas fluorescens Migula: 61. Mitteilung Ferribactin, ein Siderochromaus Pseudomonas fluorescens Migula. Archives in Microbiology 60:326–39.
  • Mendes, R., P. Garbeva, and J. M. Raaijmakers. 2013. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37 (5):634–63. doi: 10.1111/1574-6976.12028.
  • Montanez, A., A. Rodriguez Blanco, C. Barlocco, M. Beracochea, and M. Sicardi. 2012. Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Applied Soil Ecology 58:21–8. doi: 10.1016/j.apsoil.2012.02.009.
  • Moore, W. E. C., and L. V. H. Moore. 1992. Index of the bacterialand yeast nomenclature changes. Washington, DC: American Society for Microbiology.
  • Murai, N. 2014. Review: Plant growth hormone cytokinins control the crop seed yield. American Journal of Plant Sciences 05 (14):2178–87. doi: 10.4236/ajps.2014.514231.
  • Nakagawa, T., S. Okazaki, and N. Shibuya. 2014. Genes involved in pathogenesis and defense responses. In: The lotus japonicus genome, compendium of plant genomes, ed S. Tabata, J. Stougaard, 163–9. Berlin: Springer. doi: 10.1007/978-3-662-44270-8_15.
  • Nandakumar, R., S. Babu, T. Raguchander, and R. Samiyappan. 2007. Chitinolytic activity of native Pseudomonas fluorescens strains. Journal of Agricultural Science and Technology 9:61–8.
  • Nelson, E. B. 2018. The seed microbiome: Origins, interactions, and impacts. Plant and Soil 422 (1–2):7–34. doi: 10.1007/s11104-017-3289-7.
  • Newman, E., and A. Watson. 1977. Microbial abundance in the rhizosphere: A computer model. Plant and Soil 48 (1):17–56. doi: 10.1007/BF00015157.
  • Niu, D.-D., H.-X. Liu, C.-H. Jiang, Y.-P. Wang, Q.-Y. Wang, H.-L. Jin, and J.-H. Guo. 2011. The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Molecular Plant-Microbe Interactions : MPMI 24 (5):533–42. doi: 10.1094/MPMI-09-10-0213.
  • Ordantlich, A., Y. Elad, and Y. Chet. 1988. The role of chitinase of Serretia marcescens in biocontrol of Sclerotium rolfsie. Phytopathology 78 (1):84–8.
  • Pajerowska-Mukhtar, K. M., D. K. Emerine, and M. S. Mukhtar. 2013. Tell me more: Roles of NPRs in plant immunity. Trends in Plant Science 18 (7):402–11. doi: 10.1016/j.tplants.2013.04.004.
  • Panke-Buisse, K., A. C. Poole, J. K. Goodrich, R. E. Ley, and J. Kao-Kniffin. 2015. Selection on soil microbiomes reveals reproducible trait impacts on plant functions. The ISME Journal 9 (4):980–9. doi: 10.1038/ismej.2014.196.
  • Paul, A., and R. Dubey. 2015. Characterization of protein involved in nitrogen fixation and estimation of Co-factor. International Journal of Current Research in Biosciences and Plant Biology 2 (1):89–97.
  • Paustian, K., J. Lehmann, S. Ogle, D. Reay, P. G. Robertson, and P. Smith. 2016. Climatesmart soils. Nature 532 (7597):49–57. doi: 10.1038/nature17174.
  • Pereira, S. I. A., C. Monteiro, A. L. Vega, and P. M. L. Castro. 2016. Endophytic culturable bacteria colonizingLavandula dentate L. plants: Isolation, characterization and evaluation of their plantgrowth-promoting activities. Ecological Engineering 87:91–7. doi: 10.1016/j.ecoleng.2015.11.033.
  • Pieterse, C. M. J., D. Van der Does, C. Zamioudis, A. Leon-Reyes, and S. C. M. Van Wees. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28:489–521. doi: 10.1146/annurev-cellbio-092910-154055.
  • Pinedo, I., T. Ledger, M. Greve, and M. J. Poupin. 2015. Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in A. thaliana salt tolerance. Frontiers in Plant Science 6:466. doi: 10.3389/fpls.2015.00466.
  • Plackett, A. R. G., and Z. A. Wilson. 2016. Gibberellins and plant reproduction. Annual Plant Reviews 49:323–58.
  • Rana, K. L., D. Kour, A. N. Yadav, N. Yadav, and A. K. Saxena. 2020. Agriculturally important microbial biofilms: Biodiversity, ecological significances, and biotechnological applications. In: New and future developments in microbial biotechnology and bioengi10 Microbial Consortium with Multifunctional Plant Growth-Promoting Attributes… 254 neering: Microbial biofilms, ed M. K. Yadav, B. P. Singh, 221–65. Cambridge, MA: Elsevier.
  • Rastegari, A. A., A. N. Yadav, and N. Yadav. 2020. Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: Diversity and functional perspectives. Amsterdam: Elsevier.
  • Rehman, F., M. Kalsoom, M. Adnan, M. D. Toor, and A. Zulfiqar. 2020. Plant growth promoting rhizobacteria and their mechanisms involved in agricultural crop production: A review. SunText Review of Biotechnology 1 (2):110.
  • Richardson, A. E., P. J. Hocking, R. J. Simpson, and T. S. George. 2009. Plant mechanisms to optimize access to soil phosphorus. Crop and Pasture Science 60 (2):124–43. doi: 10.1071/CP07125.
  • Richardson, A. E., and R. J. Simpson. 2011. Soil microorganisms mediating phosphorus availability. Plant Physiology 156 (3):989–96. doi: 10.1104/pp.111.175448.
  • Ripa, F. A., W. D. Cao, S. Tong, and J. G. Sun. 2019. Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. BioMed Research International 2019:6105865. doi: 10.1155/2019/6105865.
  • Ruzzi, M., and R. Aroca. 2015. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae 196:124–34. doi: 10.1016/j.scienta.2015.08.042.
  • Saha, M., S. Sarkar, B. Sarkar, B. Sharma, S. Bhattacharjee, and P. Tribedi. 2016. Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research International 23 (5):3984–99. doi: 10.1007/s11356-015-4294-0.
  • Saleem, M., A. D. Law, and L. A. Moe. 2016. Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microbial Ecology 71 (2):469–72. doi: 10.1007/s00248-015-0672-x.
  • Santi, C., D. Bogusz, and C. Franche. 2013. Biological nitrogen fixation in non-legume plants. Annals of Botany 111 (5):743–67. doi: 10.1093/aob/mct048.
  • Santoyo, G., G. Moreno-Hagelsieb, M. del Carmen Orozco-Mosqueda, and B. R. Glick. 2016. Plant growth-promoting bacterial endophytes. Microbiological Research 183:92–9. doi: 10.1016/j.micres.2015.11.008.
  • Schiltz, S., I. Gaillard, N. Pawlicki-Jullian, B. Thiombiano, F. Mesnard, and E. Gontier. 2015. A review: What is the spermosphere and how can it be studied? Journal of Applied Microbiology 119 (6):1467–81. doi: 10.1111/jam.12946.
  • Senthilkumar, M., R. Anandham, M. Madhaiyan, V. Venkateswaran, and T. Sa. 2011. Endophytic bacteria: Perspectives and applications in agricultural crop production. In Bacteria agrobiology: crop ecosystems, 61–96. Berlin, Heidelberg: Springer.
  • Seshachala, U., and P. Tallapragada. 2012. Phosphate solubilizers from the rhizosphere of Piper nigrum L. in Karnataka, India. Chilean Journal of Agricultural Research 72 (3):397–403. doi: 10.4067/S0718-58392012000300014.
  • Shah, J., and J. Zeier. 2013. Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science 4:30. doi: 10.3389/fpls.2013.00030.
  • Shahzad, R., M. Waqas, A. L. Khan, S. Asaf, M. A. Khan, S. M. Kang, B. W. Yun, and I. J. Lee. 2016. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiology and Biochemistry : PPB 106:236–43. doi: 10.1016/j.plaphy.2016.05.006.
  • Sharma, S. B., R. Z. Sayyed, M. H. Trivedi, and T. A. Gobi. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587–600.
  • Shelton, J. F., I. H. Picciotto, and IN. Pessah. 2012. Tipping the balance of autism risk: Potential mechanisms linking pesticides and autism. Environmental Health Perspectives 120 (7):944–51. doi: 10.1289/ehp.1104553.
  • Shilev, S. 2013. Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by. In: Plant microbe symbiosis: Fundamentals and advances, ed N. K. Arora, 147–50. New Delhi: Springer.
  • Shine, M. B., X. Xiao, P. Kachroo, and A. Kachroo. 2019. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Science : An International Journal of Experimental Plant Biology 279:81–6. doi: 10.1016/j.plantsci.2018.01.001.
  • Singh, P., B. K. Sarma, and D. P. Singh. 2003. Effect of plant growth-promoting Rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum). Current Microbiology 46 (2):131–40. doi: 10.1007/s00284-002-3834-2.
  • Sørensen, J., and A. Sessitsch. 2015. Plant-associated bacteria lifestyle and molecular interactions. In Modern soil microbiology, 211–36. Boca Raton: CRC Press.
  • Spaepen, S., and J. Vanderleyden. 2011. Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology 3 (4):a001438–a001438. doi: 10.1101/cshperspect.a001438.
  • Spaepen, S., J. Vanderleyden, and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews 31 (4):425–48. doi: 10.1111/j.1574-6976.2007.00072.x.
  • Srivastava, S., V. Chaudhry, A. Mishra, P. S. Chauhan, A. Rehman, A. Yadav, N. Tuteja, and C. S. Nautiyal. 2012. Gene expression profiling through microarray analysis in A. thaliana colonized by Pseudomonas putida MTCC5279, a plant growth promoting rhizobacterium. Plant Signaling & Behavior 7 (2):235–45. doi: 10.4161/psb.18957.
  • Sun, L., X. Wang, and Y. Li. 2016. Increased plant growth and copper uptake of host and non- host plants by metal-resistant and plant growth-promoting endophytic bacteria. International Journal of Phytoremediation 18 (5):494–501. doi: 10.1080/15226514.2015.1115962.
  • Taghavi, S., C. Garafola, S. Monchy, L. Newman, A. Hoffman, N. Weyens, T. Barac, L. Vangronsve, and D. van der Lelie. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Applied and Environmental Microbiology 75 (3):748–57. doi: 10.1128/AEM.02239-08.
  • Taghinasab, M., J. Imani, D. Steffens, S. P. Glaeser, and K. H. Kogel. 2018. The root endophytes Trametesversicolor and Piriformospora indica increase grain yield and P content in wheat. Plant and Soil 426 (1–2):339–48. doi: 10.1007/s11104-018-3624-7.
  • Tajini, F., M. Trabelsi, and J. J. Drevon. 2012. Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi Journal of Biological Sciences 19 (2):157–63. doi: 10.1016/j.sjbs.2011.11.003.
  • Tak, H. I., F. Ahmad, O. O. Babalola, and A. Inam. 2012. Growth, photosynthesis and yield of chickpea as influenced by urban wastewater and different levels of phosphorus. International Journal of Plant Research 2 (2):6–13. doi: 10.5923/j.plant.20120202.02.
  • Taylor, K. G., and K. O. Konhauser. 2011. Iron in earth surface systems. Elements 7 (2):83–8. doi: 10.2113/gselements.7.2.83.
  • Temme, K., D. Zhao, and C. A. Voigt. 2012. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proceedings of the National Academy of Sciences of the United States of America 109 (18):7085–90. doi: 10.1073/pnas.1120788109.
  • Timmusk, S., L. Behers, J. Muthoni, A. Muraya, and A. C. Aronsson. 2017. Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science 8:49. doi: 10.3389/fpls.2017.00049.
  • Timmusk, S., V. Paalme, T. Pavlicek, J. Bergquist, A. Vangala, T. Danilas, and E. Nevo. 2011. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6 (3):e17968. doi: 10.1371/journal.pone.0017968.
  • Truyens, S., N. Weyens, A. Cuypers, and J. Vangronsveld. 2015. Bacterial seed endophytes: Genera, vertical transmission and interaction with plants. Environmental Microbiology Reports 7 (1):40–50. doi: 10.1111/1758-2229.12181.
  • Tscharntke, T., Y. Clough, T. C. Wanger, L. Jackson, I. Motzke, I. Perfecto, J. Vandermeer, and A. Whitbread. 2012. Global food security: Biodiversity conservation and the future of agricultural intensification. Biological Conservation 151 (1):53–9. doi: 10.1016/j.biocon.2012.01.068.
  • Turner, T. R., E. K. James, and P. S. Poole. 2013. The plant microbiome. Genome Biology 14 (6):209. doi: 10.1186/gb-2013-14-6-209.
  • Urbanova, T., and G. Leubner-Metzger. 2016. Gibberellins and seed germination. Annual Plant Reviews 49:253–84.
  • Van Loon, L. C., and P. A. H. M. Bakker. 2006. Root-associated bacteria inducing systemic resistance. In Plant-associated bacteria, ed S. S. Gnanamanickam, 269–316. Dordrecht, The Netherlands: Springer.
  • Vejan, P., R. Abdullah, T. Khadiran, S. Ismail, and A. Nasrulhaq Boyce. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability- a review. Molecules 21 (5):573. doi: 10.3390/molecules21050573.
  • Vujanovic, V., and J. J. Germida. 2017. Seed endosymbiosis: a vital relationship in providing prenatal care to plants. Canadian Journal of Plant Science 97:972–81. doi: 10.1139/CJPS-2016-0261.
  • Wang, S. L., I. L. Shih, T. W. Liang, and C. H. Wang. 2002. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. Journal of Agricultural and Food Chemistry 50 (8):2241–8. doi: 10.1021/jf010885d.
  • Wang, L., L. Zhang, Z. Liu, D. Zhao, X. Liu, B. Zhang, J. Xie, Y. Hong, P. Li, S. Chen, et al. 2013. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genetics 9 (10):e1003865. doi: 10.1371/journal.pgen.1003865.
  • Weller, D. M., D. V. Mavrodi, J. A. van Pelt, C. M. J. Pieters, L. C. van Loon, and P. A. H. M. Bakker. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol producing Pseudomonas fluorescens. Phytopathology 102 (4):403–12. doi: 10.1094/PHYTO-08-11-0222.
  • Winkelmann, G. 2007. Ecology of siderophores with special referenceto the fungi. Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 20 (3–4):379–92. doi: 10.1007/s10534-006-9076-1.
  • Wong, W. S., S. N. Tan, L. Ge, X. Chen, and J. W. H. Yong. 2015. The importance of phytohormones and microbes in biofertilizers. In Bacterial metabolites in sustainable agroecosystem, ed D. K. Maheshwari, 105–58. Cham: Springer.
  • Xiong, X. Q., H. D. Liao, J. S. Ma, X. M. Liu, L. Y. Zhang, X. W. Shi, X. L. Yang, X. N. Lu, and Y. H. Zhu. 2014. Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Letters in Applied Microbiology 58 (2):123–9. doi: 10.1111/lam.12163.
  • Xu, G., X. Fan, and A. J. Miller. 2012b. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology 63:153–82. doi: 10.1146/annurev-arplant-042811-105532.
  • Xu, J., X. L. Li, and L. Luo. 2012a. Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress. Applied and Environmental Microbiology 78 (22):8056–61. doi: 10.1128/AEM.01276-12.
  • Yadegari, M., H. A. Rahmani, G. Noormohammadi, and A. Ayneband. 2010. Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. Journal of Plant Nutrition 33 (12):1733–43. doi: 10.1080/01904167.2010.503776.
  • Yang, P. X., L. Ma, M. H. Chen, J. Q. Xi, F. He, C. Q. Duan, M. H. Mo, D. H. Fang, Y. Q. Duan, and F. X. Yang. 2012. Phosphate solubilizing ability and phylogenetic diversity of bacteria from P-rich soils around dianchi lake drainage area of China. Pedosphere 22 (5):707–16. doi: 10.1016/S1002-0160(12)60056-3.
  • Yang, H., H. Wu, X. Wang, Z. Cui, and Y. Li. 2011. Selection and characteristics of a switchgrass-colonizing microbial community to produce extracellular cellulases and xylanases. Bioresource Technology 102 (3):3546–50. doi: 10.1016/j.biortech.2010.09.009.
  • Yang, J., X. Xie, X. Wang, R. Dixon, and Y. P. Wang. 2014. Reconstruction and minimal gene requirements for the alternative iron‐only nitrogenase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 111:E3718–E3725.
  • Zarraonaindia, I., S. M. Owens, P. Weisenhorn, K. West, J. Hampton-Marcell, S. Lax, N. A. Bokulich, D. A. Mills, G. Martin, S. Taghavi, et al. 2015. The soil microbiome influences grapevine-associated microbiota. mBio 6 (2):e02527. doi: 10.1128/mBio.02527-14.
  • Zhao, K., P. Penttinen, X. Zhang, X. Ao, M. Liu, X. Yu, and Q. Chen. 2014. Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research 169 (1):76–82. doi: 10.1016/j.micres.2013.07.003.
  • Zhu, F., L. Qu, X. Hong, and X. Sun. 2011. Isolation and characterization of a phosphate solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of yellow sea of China. Evidence-Based Complementary and Alternative Medicine : eCAM 2011:615032. doi: 10.1155/2011/615032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.