244
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthetic nano-hydroxyapatite as an alternative phosphorus source for wheat grown under field conditions

ORCID Icon & ORCID Icon
Pages 3653-3666 | Received 27 Jul 2022, Accepted 26 Apr 2023, Published online: 08 May 2023

References

  • Abdel-Salam, M. 2018. Implications of applying nano-hydroxyapatite and nano-iron oxide on Faba bean (Vicia faba L.) productivity. Journal of Soil Sciences and Agricultural Engineering 9 (11):543–8. doi: 10.21608/jssae.2018.36469.
  • Adhikari, T., S. Kundu, V. Meena, and A. S. Rao. 2014. Utilization of nano rock phosphate by maize (Zea mays L.) crop in a vertisol of Central India. Journal of Agricultural Science and Technology. A 4 (5A):384–94.
  • Barker, A. V., & Pilbeam, D. J. (Eds.). 2015. Handbook of plant nutrition. Boca Raton, FL: CRC press.
  • Barton, C. J. 1948. Photometric analysis of phosphate rock. Analytical Chemistry 20 (11):1068–73. doi: 10.1021/ac60023a024.
  • Bensalah, H., M. F. Bekheet, S. A. Younssi, M. Ouammou, and A. Gurlo. 2018. Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste. Journal of Environmental Chemical Engineering 6 (1):1347–52. doi: 10.1016/j.jece.2018.01.052.
  • Blackwell, M. S. A., T. Darch, and R. P. Haslam. 2019. Phosphorus use efficiency and fertilizers: Future opportunities for improvements. Frontiers of Agricultural Science and Engineering 6 (4):332–40. doi: 10.15302/J-FASE-2019274.
  • Borm, P., F. C. Klaessig, T. D. Landry, B. Moudgil, J. Pauluhn, K. Thomas, R. Trottier, and S. Wood. 2006. Research strategies for safety evaluation of nanomaterials, part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicological Sciences: An Official Journal of the Society of Toxicology 90 (1):23–32. doi: 10.1093/toxsci/kfj084.
  • Broadley, M., P. Brown, I. Cakmak, J. F. Ma, Z. Rengel, and F. Zhao. 2012. Beneficial elements. In Marschner’s mineral nutrition of higher plants, 249–69. San Diego, CA: Academic Press. doi: 10.1016/B978-0-12-384905-2.00008-X.
  • Ch, A., S. Sagadevan, and A. Dakshnamoorthy. 2013. Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. International Journal of Physical Sciences 8 (32):1639–45.
  • Chen, Z., Y. Liu, L. Mao, L. Gong, W. Sun, and L. Feng. 2018. Effect of cation doping on the structure of hydroxyapatite and the mechanism of defluoridation. Ceramics International 44 (6):6002–9. doi: 10.1016/j.ceramint.2017.12.191.
  • Childers, D. L., J. Corman, M. Edwards, and J. J. Elser. 2011. Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle. BioScience 61 (2):117–24. doi: 10.1525/bio.2011.61.2.6.
  • da Silva, V. N., L. E. de Souza Fernandes da Silva, A. J. N. da Silva, N. P. Stamford, and G. R. de Macedo. 2017. Solubility curve of rock powder inoculated with microorganisms in the production of biofertilizers. Agriculture and Natural Resources 51 (3):142–7. doi: 10.1016/j.anres.2017.01.001.
  • Daneshgar, S., A. Callegari, A. G. Capodaglio, and D. Vaccari. 2018. The potential phosphorus crisis: Resource conservation and possible escape technologies: A review. Resources 7 (2):37. doi: 10.3390/resources7020037.
  • Drostkar, E., R. Talebi, and H. Kanouni. 2016. Foliar application of Fe, Zn and NPK nano-fertilizers on seed yield and morphological traits in chickpea under rainfed condition. Journal of Resources and Ecology 4 (1):221–8.
  • El-Azizy, F., A. Habib, and A. Abd-El Baset. 2021. Effect of nano phosphorus and potassium fertilizers on productivity and mineral content of broad bean in North Sinai. Journal of Soil Sciences and Agricultural Engineering 12 (4):239–46. doi: 10.21608/jssae.2021.161844.
  • Fleischer, A., M. A. O'Neill, and R. Ehwald. 1999. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiology 121 (3):829–38. doi: 10.1104/pp.121.3.829.
  • Gunes, A., A. Inal, M. S. Adak, M. Alpaslan, E. G. Bagci, T. Erol, and D. J. Pilbeam. 2007. Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture. Nutrient Cycling in Agroecosystems 78 (1):83–96. doi: 10.1007/s10705-006-9075-1.
  • Gunes, A., A. Inal, M. Alpaslan, and I. Cakmak. 2006. Genotypic variation in phosphorus efficiency between wheat cultivars grown under greenhouse and field conditions. Soil Science and Plant Nutrition 52 (4):470–8. doi: 10.1111/j.1747-0765.2006.00068.
  • Guo, J., Y. Han, Y. Mao, and M. N. Wickramaratne. 2017. Influence of alginate fixation on the adsorption capacity of hydroxyapatite nanocrystals to Cu2+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 529:801–7. doi: 10.1016/j.colsurfa.2017.06.075.
  • IFA. 2021. IFASTAT. International Fertilizer Association. Accessed December 1, 2021. https://www.ifastat.org
  • Inal, A., A. Gunes, F. Zhang, and I. Cakmak. 2007. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots. Plant Physiology and Biochemistry: PPB 45 (5):350–6. doi: 10.1016/j.plaphy.2007.03.016.
  • Jiao, W., W. Chen, A. C. Chang, and A. L. Page. 2012. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environmental Pollution (Barking, Essex: 1987) 168:44–53. doi: 10.1016/j.envpol.2012.03.052.
  • Jones, J. B. 2001. Laboratory guide for conducting soil tests and plant analysis. Boca Raton, FL: CRC press.
  • Johnson, R. A., and G. K. Bhattacharyya. 2019. Statistics: Principles and methods. New York: John Wiley & Sons.
  • Kottegoda, N., I. Munaweera, N. Madusanka, and V. Karunaratne. 2011. A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science 101:73–8.
  • Liu, R., and R. Lal. 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports 4 (1):5686. doi: 10.1038/srep05686.
  • Liu, R., H. Zhang, and R. Lal. 2016. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: Nanotoxicants or nanonutrients? Water, Air, & Soil Pollution 227 (1):42. doi: 10.1007/s11270-015-2738-2.
  • Loneragan, J. F., and M. J. Webb. 1993. Interactions between zinc and other nutrients affecting the growth of plants. In Zinc in soils and plants, 119–34. Dordrecht: Springer.
  • Madanayake, N. H., N. M. Adassooriya, and N. Salim. 2021. The effect of hydroxyapatite nanoparticles on Raphanus sativus with respect to seedling growth and two plant metabolites. Environmental Nanotechnology, Monitoring & Management 15:100404. doi: 10.1016/j.enmm.2020.100404.
  • Marchiol, L., A. Filippi, A. Adamiano, L. Degli Esposti, M. Iafisco, A. Mattiello, E. Petrussa, and E. Braidot. 2019. Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): Preliminary evidence. Agronomy 9 (4):161. doi: 10.3390/agronomy9040161.
  • Marschner, H. 2011. Marschner’s mineral nutrition of higher plants. London: Academic press.
  • McKnight, M. M., Z. Qu, J. K. Copeland, D. S. Guttman, and V. K. Walker. 2020. A practical assessment of nano-phosphate on soybean (Glycine max) growth and microbiome establishment. Scientific Reports 10 (1):1–17. doi: 10.1038/s41598-020-66005-w.
  • Menezes-Blackburn, D., C. Giles, T. Darch, T. S. George, M. Blackwell, M. Stutter, C. Shand, D. Lumsdon, P. Copper, R. Wendler, et al. 2018. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant and Soil 427 (1):5–16. doi: 10.1007/s11104-017-3362-2.
  • Merghany, M. M., M. M. Shahein, M. A. Sliem, K. F. Abdelgawad, and A. F. Radwan. 2019. Effect of nano-fertilizers on cucumber plant growth, fruit yield and it’s quality. Plant Archives 19 (2):165–72.
  • Miranda-Villagomez, E., L. I. Trejo-Tellez, F. C. Gomez-Merino, M. Sandoval-Villa, P. Sanchez-Garcia, and M. A. Aguilar-Mendez. 2019. Nanophosphorus fertilizer stimulates growth and photosynthetic activity and improves P status in rice. Journal of Nanomaterials 2019:1–11. doi: 10.1155/2019/5368027.
  • Montalvo, D., M. J. McLaughlin, and F. Degryse. 2015. Efficacy of hydroxyapatite nanoparticles as phosphorus fertilizer in andisols and oxisols. Soil Science Society of America Journal 79 (2):551–8. doi: 10.2136/sssaj2014.09.0373.
  • Moosavi, S., S. Zakaria, C. H. Chia, S. Gan, N. A. Azahari, and H. Kaco. 2017. Hydrothermal synthesis, magnetic properties and characterization of CoFe2O4 nanocrystals. Ceramics International 43 (10):7889–94. doi: 10.1016/j.ceramint.2017.03.110.
  • Murphy, L. S., R. Ellis, Jr, and D. C. Adriano. 1981. Phosphorus‐micronutrient interaction effects on crop production. Journal of Plant Nutrition 3 (1–4):593–613. doi: 10.1080/01904168109362863.
  • Narendran, P., A. Rajendran, M. Garhnayak, L. Garhnayak, J. Nivedhitha, K. C. Devi, and D. K. Pattanayak. 2018. Influence of pH on wet-synthesis of silver decorated hydroxyapatite nanopowder. Colloids and Surfaces. B, Biointerfaces 169:143–50. doi: 10.1016/j.colsurfb.2018.04.039.
  • Nelson, D. W., and L. E. Sommers. 1980. Total nitrogen analysis of soil and plant tissues. Journal of AOAC International 63 (4):770–8. doi: 10.1093/jaoac/63.4.770.
  • Okur, M., and D. D. E. Koyuncu. 2020. The evaluation of hydroxyapatite synthesized from waste eggshell in the adsorption of Remazol N. Blue RGB dye. Journal of the Faculty of Engineering and Architecture of Gazi University 35 (1):419–30. doi: 10.17341/gazimmfd.474350.
  • Raghothama, K. G. 1999. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology 50 (1):665–93. doi: 10.1146/annurev.arplant.50.1.665.
  • Rengel, Z., G. D. Batten, and D. D. Crowley. 1999. Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research 60 (1–2):27–40. doi: 10.1016/S0378-4290(98)00131-2.
  • Roberts, T. L., and A. E. Johnston. 2015. Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycling 105:275–81. doi: 10.1016/j.resconrec.2015.09.013.
  • Sajadinia, H., D. Ghazanfari, K. Naghavii, H. Naghavi, and B. Tahamipur. 2021. A comparison of microwave and ultrasound routes to prepare nano-hydroxyapatite fertilizer improving morphological and physiological properties of maize (Zea mays L.). Heliyon 7 (3):e06094. doi: 10.1016/j.heliyon.2021.e06094.
  • Samavini, R., C. Sandaruwan, M. De Silva, G. Priyadarshana, N. Kottegoda, and V. Karunaratne. 2018. Effect of citric acid surface modification on solubility of hydroxyapatite nanoparticles. Journal of Agricultural and Food Chemistry 66 (13):3330–7. doi: 10.1021/acs.jafc.7b05544.
  • Sashidhar, B., and A. R. Podile. 2010. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. Journal of Applied Microbiology 109 (1):1–12. doi: 10.1111/j.1365-2672.2009.04654.x.
  • Schröder, J. J., A. L. Smit, D. Cordell, and A. Rosemarin. 2011. Improved phosphorus use efficiency in agriculture: A key requirement for its sustainable use. Chemosphere 84 (6):822–31. doi: 10.1016/j.chemosphere.2011.01.065.
  • Shams, A. S., and M. Abbas. 2019. Can hydroxyapatite and boron oxide nano-fertilizers substitute calcium superphosphate and boric acid for broccoli (Brassica oleracea var. italica) grown on a heavy clay soil? Egyptian Journal of Horticulture 46 (2):215–34. doi: 10.21608/ejoh.2019.16154.1113.
  • Solanki, P., A. Bhargava, H. Chhipa, N. Jain, and J. Panwar. 2015. Nano-fertilizers and their smart delivery system. In Nanotechnologies in food and agriculture, 81–101. Cham: Springer.
  • Taşkın, M. B., Ö. Şahin, H. Taskin, O. Atakol, A. Inal, and A. Gunes. 2018. Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant. Journal of Plant Nutrition 41 (9):1148–54. doi: 10.1080/01904167.2018.1433836.
  • Temminghoff, E. E., & Houba, V. J. (Eds.). 2004. Plant analysis procedures. Dordrecht: Springer Netherlands. doi: 10.1007/978-1-4020-2976-9-4.
  • Thanh, D. N., P. Novak, J. Vejpravova, H. N. Vu, J. Lederer, and T. Munshi. 2018. Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. Journal of Magnetism and Magnetic Materials 456:451–60. doi: 10.1016/j.jmmm.2017.11.064.
  • Tian, D., Z. Li, D. O'Connor, and Z. Shen. 2020. The need to prioritize sustainable phosphate‐based fertilizers. Soil Use and Management 36 (3):351–4. doi: 10.1111/sum.12578.
  • Trommer, R. M., L. A. Santos, and C. P. Bergmann. 2007. Alternative technique for hydroxyapatite coatings. Surface and Coatings Technology 201 (24):9587–93. doi: 10.1016/j.surfcoat.2007.04.028.
  • Wang, S., X. Liang, Y. Chen, Q. Luo, W. Liang, S. Li, C. Huang, Z. Li, L. Wan, W. Li, et al. 2012. Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long‐term paddy wetland agroecosystems. Soil Science Society of America Journal 76 (1):161–7. doi: 10.2136/sssaj2011.0078.
  • Watanabe, Y., H. Yamada, T. Ikoma, J. Tanaka, G. W. Stevens, and Y. Komatsu. 2014. Preparation of a zeolite NaP1/hydroxyapatite nanocomposite and study of its behavior as inorganic fertilizer. Journal of Chemical Technology & Biotechnology 89 (7):963–8. doi: 10.1002/jctb.4185.
  • Wilkinson, S. R., D. L. Grunes, and M. E. Sumner. 2000. Nutrient interactions in soil and plant nutrition. Handbook of soil science, 89–112. Boca Raton, FL.
  • Wolff, J., D. Hofmann, W. Amelung, H. Lewandowski, K. Kaiser, and R. Bol. 2018. Rapid wet chemical synthesis for 33P-labelled hydroxyapatite – An approach for environmental research. Applied Geochemistry 97:181–6. doi: 10.1016/j.apgeochem.2018.08.010.
  • Xiong, L., P. Wang, and P. M. Kopittke. 2018a. Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils. Geoderma 323:116–25. doi: 10.1016/j.geoderma.2018.03.002.
  • Xiong, L., P. Wang, M. N. Hunter, and P. M. Kopittke. 2018b. Bioavailability and movement of hydroxyapatite nanoparticles (HA-NPs) applied as a phosphorus fertiliser in soils. Environmental Science: Nano 5 (12):2888–98. doi: 10.1039/C8EN00751A.
  • Xue, Y., H. Xia, P. Christie, Z. Zhang, L. Li, and C. Tang. 2016. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: A critical review. Annals of Botany 117 (3):363–77. doi: 10.1093/aob/mcv182.
  • Yoon, H. Y., J. G. Lee, L. D. Esposti, M. Iafisco, P. J. Kim, S. G. Shin, J. R. Jeon, and A. Adamiano. 2020. Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: Toward a multifunctional nanofertilizer. ACS Omega 5 (12):6598–610. doi: 10.1021/acsomega.9b04354.
  • Zhang, Q., Y. Song, Z. Wu, X. Yan, A. Gunina, Y. Kuzyakov, and Z. Xiong. 2020. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. Journal of Cleaner Production 242:118435. doi: 10.1016/j.jclepro.2019.118435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.