227
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The toxicity and uptake of bulk and nano-sized ZnO particles in wheat (Triticum aestivum) seedlings

, ORCID Icon & ORCID Icon
Pages 3667-3682 | Received 03 Dec 2021, Accepted 07 Apr 2023, Published online: 10 May 2023

References

  • Alloway, B. J. 2004. Zinc in soils and crop nutrition. Brussels: IZA Publications.
  • Assche, F. V., and H. Clijsters. 1990. Effects of metals on enzyme activity in plants. Plant, Cell and Environment 13 (3):195–206. doi: 10.1111/j.1365-3040.1990.tb01304.x.
  • Bour, A., F. Mouchet, J. Silvestre, L. Gauthier, and E. Pinelli. 2015. Environmentally relevant approaches to assess nanoparticles ecotoxicity: A review. Journal of Hazardous Materials 283:764–77. doi: 10.1016/j.jhazmat.2014.10.021.
  • Du, W., J. Yang, Q. Peng, X. Liang, and H. Mao. 2019. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 227:109–16. doi: 10.1016/j.chemosphere.2019.03.168.
  • Durán, N., P. D. Marcato, M. DURáN, A. Yadav, A. Gade, and M. Rai. 2011. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Applied Microbiology and Biotechnology 90 (5):1609–24. doi: 10.1007/s00253-011-3249-8.
  • Falco, W., A. Queiroz, J. Fernandes, E. Botero, E. Falcão, F. Guimarães, J. M’peko, S. Oliveira, I. Colbeck, and A. Caires. 2015. Interaction between chlorophyll and silver nanoparticles: A close analysis of chlorophyll fluorescence quenching. Journal of Photochemistry and Photobiology A: Chemistry 299:203–9. doi: 10.1016/j.jphotochem.2014.12.001.
  • Gnanasangeetha, D., and D. S. Thambavani. 2013. Biogenic production of zinc oxide nanoparticles using Acalypha indica. Journal of Chemical, Biological and Physical Sciences (JCBPS) 4:238.
  • Gul, M. Z., K. Rupula, and S. R. Beedu. 2022. Chapter 6 - Nano-phytoremediation for soil contamination: An emerging approach for revitalizing the tarnished resource. In Phytoremediation, ed. R. A. Bhat, F. M. P. Tonelli, G. H. Dar, and K. Hakeem. USA: Academic Press.
  • Hacisalihoglu, G., and L. V. Kochian. 2003. How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytologist 159:341–50. doi: 10.1046/j.1469-8137.2003.00826.x.
  • Hafeez, A., A. Razzaq, T. Mahmood, and H. M. Jhanzab. 2015. Potential of copper nanoparticles to increase growth and yield of wheat. Journal of Nanoscience with Advanced Technology 1 (1):6–11. doi: 10.24218/jnat.2015.02.
  • Halsted, J. A., H. A. Ronaghy, P. Abadi, M. Haghshenass, G. H. Amirhakemi, R. M. Barakat, and J. G. Reinhold. 1972. Zinc deficiency in man: The Shiraz experiment. The American Journal of Medicine 53 (3):277–84. doi: 10.1016/0002-9343(72)90169-6.
  • Ibrahim, A. S., G. A. Ali, A. Hassanein, A. M. Attia, and E. R. Marzouk. 2022. Toxicity and Uptake of CuO Nanoparticles: Evaluation of an Emerging Nanofertilizer on Wheat (Triticum aestivum L.) Plant. Sustainability 14 (9):4914. doi: 10.3390/su14094914.
  • Jakhar, A. M., I. Aziz, A. R. Kaleri, M. Hasnain, G. Haider, J. Ma, and Z. Abideen. 2022. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact 27:100411. doi: 10.1016/j.impact.2022.100411.
  • Johnson, D. R. 2016. Nanometer-sized emissions from municipal waste incinerators: A qualitative risk assessment. Journal of Hazardous Materials 320:67–79. doi: 10.1016/j.jhazmat.2016.08.016.
  • Klabunde, K. J., and R. Richards. 2001. Nanoscale materials in chemistry. New Jersy, U.S.: Wiley Online Library.
  • Kopittke, P. M., T. B. Kinraide, P. Wang, F. P. C. Blamey, S. M. Reichman, and N. W. Menzies. 2011. Alleviation of Cu and Pb rhizotoxicities in Cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface. Environmental Science & Technology 45 (11):4966–73. doi: 10.1021/es1041404.
  • Krauss, M., W. Wilcke, J. Kobza, and W. Zech. 2002. Predicting heavy metal transfer from soil to plant: Potential use of Freundlich‐type functions. Journal of Plant Nutrition and Soil Science 165 (1):3–8. doi: 10.1002/1522-2624(200202)165:1<3::AID-JPLN3>3.0.CO;2-B.
  • Kumar, M., and F. M. Qureshi. 2012. Dynamics of Zinc Fractions, Availability to Wheat (Triticum aestivum L.) and Residual Effect on Succeeding Maize (Zea mays L.) in Inceptisols. Journal of Agricultural Science 4 (6):236–45. doi: 10.5539/jas.v4n6p236.
  • Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40 (9):1361–403. doi: 10.1021/ja02242a004.
  • Lee, W., Y. An, H. Yoon, and H. Kweon. 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water insoluble nanoparticles. Environmental Toxicology and Chemistry 27 (9):1915–21. doi: 10.1897/07-481.1.
  • Lee, C. W., S. Mahendra, K. Zodrow, D. Li, Y. C. Tsai, J. Braam, and P. J. Alvarez. 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry 29 (3):669–75. doi: 10.1002/etc.58.
  • Lin, D., and B. Xing. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology 42 (15):5580–5. doi: 10.1021/es800422x.
  • Liu, Q., B. Chen, Q. Wang, X. Shi, Z. Xiao, J. Lin, and X. Fang. 2009. Carbon nanotubes as molecular transporters for walled plant cells. Nano Letters 9 (3):1007–10. doi: 10.1021/nl803083u.
  • Marzouk, E. R., S. R. Chenery, and S. D. Young. 2013. Predicting the solubility and lability of Zn, Cd, and Pb in soils from a minespoil-contaminated catchment by stable isotopic exchange. Geochimica et Cosmochimica Acta 123:1–16. doi: 10.1016/j.gca.2013.09.004.
  • Marzouk, E. R., A. Sally, and A. Hamza. 2016. Toxicity of synthesized copper nanoparticles to soybean: Deferential effects of nano and bulk-size particles on root elongation rate. In: 3rd International Conference on Sustainable Agriculture and Environment (3rd ICSAE), ed. M. Direk, 111–118. September 26–28, Warsaw, Poland. Konya, Turkey.
  • Memarian, R., and A. S. Ramamurthy. 2013. Modeling of lead and cadmium uptake by plants in the presence of surfactants. Environmental Monitoring and Assessment 185 (3):2067–71. doi: 10.1007/s10661-012-2688-8.
  • Misra, S. K., A. Dybowska, D. Berhanu, M. N. L. Croteau, S. N. Luoma, A. R. Boccaccini, and E. Valsami-Jones. 2012. Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies. Environmental Science & Technology 46 (2):1216–22. doi: 10.1021/es2039757.
  • Monreal, C., M. Derosa, S. Mallubhotla, P. Bindraban, and C. Dimkpa. 2016. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biology and Fertility of Soils 52 (3):423–37. doi: 10.1007/s00374-015-1073-5.
  • Montvydienė, D., A. Jagminas, Ž. Jurgelėnė, M. Kazlauskas, R. Butrimienė, Z. Žukauskaitė, and N. Kazlauskienė. 2021. Toxicological effects of different-sized Co–Fe (CoFe2O4) nanoparticles on Lepidium sativum L.: Towards better understanding of nanophytotoxicity. Ecotoxicology (London, England) 30 (2):277–91. doi: 10.1007/s10646-020-02340-y.
  • Morrison, D. A., and E. C. Morris. 2000. Pseudoreplication in experimental designs for the manipulation of seed germination treatments. Austral Ecology 25:292–6. doi: 10.1046/j.1442-9993.2000.01025.x.
  • Moustakas, M., P. Malea, K. Haritonidou, and I. Sperdouli. 2017. Copper bioaccumulation, photosystem II functioning, and oxidative stress in the seagrass Cymodocea nodosa exposed to copper oxide nanoparticles. Environmental Science and Pollution Research 24 (19):16007–18. doi: 10.1007/s11356-017-9174-3.
  • Pedron, F., M. Grifoni, M. Barbafieri, G. Petruzzelli, I. Rosellini, E. Franchi, R. Bagatin, and M. Vocciante. 2017. Applicability of a Freundlich-like model for plant uptake at an industrial contaminated site with a high variable arsenic concentration. Environments 4 (4):67. doi: 10.3390/environments4040067.
  • Pokhrel, L. R., and B. Dubey. 2013. Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Science of the Total Environment 452-453:321–32. doi: 10.1016/j.scitotenv.2013.02.059.
  • Abbas, Q., B. Yousaf, M. U. Ali, M. A. M. Munir, A. El-Naggar, J. Rinklebe, M., and Naushad, Amina. 2020. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environment International 138:105646. doi: 10.1016/j.envint.2020.105646.
  • Qu, R., S. Zeng, Q. Ding, Z. Liang, D. Wei, J. Li, and Y. Ma. 2016. Factors and predictions for cadmium transfer from soils into tomato plants. Communications in Soil Science and Plant Analysis 47 (13–14):1612–21. doi: 10.1080/00103624.2016.1195841.
  • Ranal, M. A., D. G. D. Santana, W. R. Ferreira, and C. Mendes-Rodrigues. 2009. Calculating germination measurements and organizing spreadsheets. Revista Brasileira de Botânica 32 (4):849–55. doi: 10.1590/S0100-84042009000400022.
  • Ritz, C., F. Baty, J. C. Streibig, and D. Gerhard. 2015. Dose-response analysis using R. PloS One 10 (12):e0146021. doi: 10.1371/journal.pone.0146021.
  • RöMHELD, V., and H. Marschner. 1991. Function of micronutrients in plants. In Micronutrients in agriculture. SSSA Book Ser. 4, ed J.J. Mortvedt, 297–328. Madison, WI: SSSA.
  • Sharma, D., M. Mathur, R. K. Prajapat, V. Kumar, M. Sharma, F. Khan, A. Joshi, and T. K. Upadhyay. 2021. Recent advancement of nanotechnology in agriculture. In Crop improvement, 167–78. Boca Raton, FL: CRC Press.
  • Sharon, M., A. K. Choudhary, and R. Kumar. 2010. Nanotechnology in agricultural diseases and food safety. Journal of Phytology 2.
  • Shetaya, W. H., E. H. Bailey, S. D. Young, E. F. Mohamed, V. Antoniadis, J. Rinklebe, S. M. Shaheen, and E. R. Marzouk. 2023. Soil and plant contamination by potentially toxic and emerging elements and the associated human health risk in some Egyptian environments. Environmental Geochemistry and Health 45 (2):359–79. doi: 10.1007/s10653-021-01097-5.
  • Shetaya, W. H., E. R. Marzouk, E. F. Mohamed, E. H. Bailey, and S. D. Young. 2019. Chemical and isotopic fractionation of lead in the surface soils of Egypt. Applied Geochemistry 106:7–16. doi: 10.1016/j.apgeochem.2019.04.013.
  • Singh, S., R. Chatrath, and B. Mishra. 2010. Perspective of hybrid wheat research: A review. Indian Journal of Agricultural Sciences 80:1013–27.
  • Solanki, P., and J. Laura. 2018. Effect of ZnO nanoparticles on seed germination and seedling growth in wheat (Triticum aestivum). Journal of Pharmacognosy and Phytochemistry 7:2048–52.
  • Tipu, M. M. H., A. Baroi, J. Rana, S. Islam, R. Jahan, M. S. Miah, and M. Asaduzzaman. 2021. Potential applications of nanotechnology in agriculture: A smart tool for sustainable agriculture.
  • Van de Venter, A. 2000. Seed vigor testing. Journal of New Seeds 2 (4):51–8. doi: 10.1300/J153v02n04_06.
  • Van der Vliet, L., and C. Ritz. 2013. Statistics for analyzing ecotoxicity test data. In Encyclopedia of aquatic ecotoxicology, ed. J.-F. Ferard and C. Blaise Dordrecht: Springer Netherlands.
  • Wang, X., X. Cui, Y. Zhao, and C. Chen. 2020. Nano-bio interactions: The implication of size-dependent biological effects of nanomaterials. Science China. Life Sciences 63 (8):1168–82. doi: 10.1007/s11427-020-1725-0.
  • Wang, P., N. W. Menzies, E. Lombi, B. A. Mckenna, B. Johannessen, C. J. Glover, P. Kappen, and P. M. Kopittke. 2013. Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environmental Science & Technology 47 (23):13822–30. doi: 10.1021/es403466p.
  • Westfall, D. G., W. B. Anderson, and R. J. Hodges. 1971. Iron and zinc response of chlorotic rice growing on calcareous soil. Agronomy Journal. 63 (5):702–5. doi: 10.2134/agronj1971.00021962006300050013x.
  • Zhang, R., H. Zhang, C. Tu, X. Hu, L. Li, Y. Luo, and P. Christie. 2015. Phytotoxicity of ZnO nanoparticles and the released Zn (II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environmental Science and Pollution Research International 22 (14):11109–17. doi: 10.1007/s11356-015-4325-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.