244
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Influence of nano-zinc oxide and fortified rice residue compost on rice productivity, zinc biofortification, zinc use efficiency, soil quality, zinc fractions and profitability in different rice production systems

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 4063-4084 | Received 23 Sep 2022, Accepted 26 Apr 2023, Published online: 16 May 2023

References

  • Abdelouhab, A. Z., D. Djouadi, A. Chelouche, L. Hammiche, and T. Touam. 2020. Structural and morphological characterizations of pure and Ce-doped ZnO nanorods hydrothermally synthesized with different caustic bases. Materials Science-Poland 38 (2):228–35. doi: 10.2478/msp-2020-0038.
  • Abdullah, A. S. 2015. Zinc availability and dynamics in the transition from flooded to aerobic rice cultivation. Journal of Plant Biology and Soil Health 2 (1):5.
  • Ali, S., M. Rizwan, S. Noureen, S. Anwar, B. Ali, M. Naveed, E. F. A. Allah, A. A. Alqarawi, and P. Ahmad. 2019. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research 26 (11):11288–99. doi: 10.1007/s11356-019-04554-y.
  • AOAC 1995. Official methods of analysis. 16th edition. The Association Office Agricultural Chemists, Washington DC: Arlington AOAC International.
  • Arora, A. K., S. Devi, V. S. Jaswal, J. Singh, M. Kinger, and V. D. Gupta. 2014. Synthesis and characterization of ZnO nanoparticles. Oriental Journal of Chemistry 30 (4):1671–9. doi: 10.13005/ojc/300427.
  • Bala, R., A. Kalia, and S. S. Dhaliwal. 2019. Evaluation of efficacy of ZnO nanoparticles as remedial zinc nano fertilizer for rice. Journal of Soil Science and Plant Nutrition 19 (2):379–89. doi: 10.1007/s42729-019-00040-z.
  • Batista, D. R., A. D. J. Franco, A. P. V. d Silva, J. A. G. F. d Silva, D. S. Tavares, J. K. d Souza, A. O. Silva, M. V. Barbosa, J. V. d Santos, and M. A. C. Carneiro. 2022. Organic substrate availability and enzyme activity affect microbial-controlled carbon dynamics in areas disturbed by a mining dam failure. Applied Soil Ecology 169:104169. doi: 10.1016/j.apsoil.2021.104169.
  • Bhardwaj, A. K., G. Arya, R. Kumar, L. Hamed, H. Pirasteh-Anosheh, P. Jasrotia, P. L. Kashyap, and G. P. Singh. 2022. Switching to nanonutrients for sustaining agroecosystems and environment: The challenges and benefits in moving up from ionic to particle feeding. Journal of Nanobiotechnology 20 (1):19. doi: 10.1186/s12951-021-01177-9.
  • Bhatt, R., S. S. Kukal, M. A. Busari, S. Arora, and M. Yadav. 2016. Sustainability issues on rice–wheat cropping system. International Soil and Water Conservation Research 4 (1):64–74. doi: 10.1016/j.iswcr.2015.12.001.
  • Borah, R. S., A. Basumatary, N. Ojha, R. Saikia, S. Bhattacharjya, M. J. Konwar, and M. Baruah. 2022. Dynamics of zinc fractions in soil as affected by zinc fertilization in a maize-maize cropping sequence in upper Brahmaputra valley zone of Assam, India. International Journal of Environment and Climate Change 12 (12):1761–70. doi: 10.9734/ijecc/2022/v12i121623.
  • Calvo, P., L. Nelson, and J. W. Kloepper. 2014. Agricultural uses of plant biostimulants. Plant and Soil 383 (1-2):3–41. doi: 10.1007/s11104-014-2131-8.
  • Casida, L., D. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Science 98 (6):371–6. doi: 10.1097/00010694-196412000-00004.
  • Chatterjee, J., B. Mandal, G. C. Hazra, and L. N. Mandal. 1992. Transformation of native and applied zinc in laterite soils under submergence. Journal of Indian Society of Soil Science 40:66–70.
  • Chen, X. P., Y. Q. Zhang, Y. P. Tong, Y. F. Xue, D. Y. Liu, W. Zhang, Y. Deng, Q. F. Meng, S. C. Yue, P. Yan, et al. 2017. Harvesting more grain zinc of wheat for human health. Scientific Reports 7 (1):7016. doi: 10.1038/s41598-017-07484-2.
  • CIMMYT Economics Program 1988., International Maize, and Wheat Improvement Center. From Agronomic Data to Farmer Recommendations: An Economics Training Manual (No. 27); CIMMYT: Texcoco, Mexico, 31–3.
  • da Silva, M. S. R. d A., B. d M. S. Dos Santos, C. S. R. d A. da Silva, C. S. R. d A. da Silva, L. F. d S. Antunes, R. M. Dos Santos, C. H. B. Santos, and E. C. Rigobelo. 2021. Humic substances in combination with plant growth-promoting bacteria as an alternative for sustainable agriculture. Frontiers in Microbiology 12:719653. doi: 10.3389/fmicb.2021.719653.
  • Dimkpa, C. O., J. Andrews, J. Fugice, U. Singh, P. S. Bindraban, W. H. Elmer, J. L. Gardea-Torresdey, and J. C. White. 2020. Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Frontiers in Plant Science 11:168.doi: 10.3389/fpls.2020.00168.
  • Dimkpa, C. O., J. C. White, W. H. Elmer, and J. Gardea-Torresdey. 2017. Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. Journal of Agricultural and Food Chemistry 65 (39):8552–9. doi: 10.1021/acs.jafc.7b02961.
  • Dobermann, A., and T. H. Fairhurst. 2002. Rice straw management. Better Crops International 16 (Special Supplement):7–11.
  • Du Jardin, P. 2015. Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196:3–14. doi: 10.1016/j.scienta.2015.09.021.
  • El-Sayed, E., A. El-Sobky, A. E. Taha, M. El-Sharnouby, S. M. Sayed, and A. S. Elrys. 2022. Zinc-biochemical co-fertilization improves rice performance and reduces nutrient surplus under semi-arid environmental conditions. Saudi Journal of Biological Sciences 29 (3):1653–67. doi: 10.1016/j.sjbs.2021.10.066.
  • Fageria, N. K. 2009. The use of nutrients in crop plants. Boca Raton, FL: CRC Press.
  • FAO 2018. FAOSTAT database. Rome: FAO. Retrieved from http://www.fao.org/faostat/en/#data/QC/
  • Farooq, M., A. Ullah, A. Rehman, A. Nawaz, A. Nadeem, A. Wakeel, F. Nadeem, H. M., and Kadambot, Siddique. 2018. Application of zinc improves the productivity and biofortification of fine grain aromatic rice grown in dry seeded and puddled transplanted production systems. Field Crops Research 216:53–62. doi: 10.1016/j.fcr.2017.11.004.
  • Fu, B., L. Chen, H. Huang, P. Qu, and Z. Wei. 2021. Impacts of crop residues on soil health: a review. Environmental Pollutants and Bioavailability 33 (1):164–73. doi: 10.1080/26395940.2021.1948354.
  • Gao, X., E. Hoffland, T. Stomph, C. A. Grant, C. Zou, and F. Zhang. 2012. Improving zinc bioavailability in transition from flooded to aerobic rice - A review. Agronomy for Sustainable Development 32 (2):465–78. doi: 10.1007/s13593-011-0053-x.
  • Garg, S., and G. Bahl. 2008. Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils. Bioresource Technology 99 (13):5773–7. doi: 10.1016/j.biortech.2007.10.063.
  • Geetha, M. S., H. Nagabhushana, and H. N. Shivananjaiah. 2016. Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. Journal of Science: Advanced Materials and Devices 1 (3):301–10. doi: 10.1016/j.jsamd.2016.06.015.
  • Ghoneim, A. M. 2016. Effect of different methods of Zn application on rice growth, yield and nutrients dynamics in plant and soil. Journal of Agriculture and Ecology Research International 6 (2):1–9. doi: 10.9734/JAERI/2016/22607.
  • Ghorbani, H., F. Mehr, H. Pazoki, and B. Rahmani. 2015. Synthesis of ZnO nanoparticles by precipitation method. Oriental Journal of Chemistry 31 (2):1219–21. doi: 10.13005/ojc/310281.
  • Gomez, K. A., and A. A. Gomez. 1984. Statistical procedure for agricultural research. 2nd ed. New York: John Wiley and Sons’ Publication. https://pdf.usaid.gov/pdf_docs/PNAAR208.pdf.
  • Guo, J. X., X. M. Feng, X. Y. Hu, g L. Tian, N. Ling, J. H. Wang, Q. R. Shen, and S. W. Guo. 2016. Effects of soil zinc availability, nitrogen fertilizer rate and zinc fertilizer application method on zinc biofortification of rice. The Journal of Agricultural Science 154 (4):584–97. doi: 10.1017/S0021859615000441.
  • Have, R. T. 1977. Outlines for filling out the coding forms. All India Coordinated Rice Improvement Project, Rajendranagar, Hyderabad, India, 150.
  • Hazra, G. C., B. Mandal, and L. N. Mandal. 1987. Distribution of zinc fractions and their transformation in submerged rice soils. Plant and Soil 104 (2):175–81. doi: 10.1007/BF02372530.
  • Hedayati, K. 2015. Fabrication and optical characterization of zinc oxide, nanoparticles prepared via a simple sol-gel method. Journal of Nanostructures 5:395–401. doi: 10.7508/JNS.2015.04.010.
  • Hussain, S., S. Peng, S. Fahad, A. Khaliq, J. Huang, K. Cui, and L. Nie. 2015. Rice management interventions to mitigate greenhouse gas emissions: A review. Environmental Science and Pollution Research International 22 (5):3342–60. doi: 10.1007/s11356-014-3760-4.
  • Ishfaq, M., N. Akbar, S. A. Anjum, and M. Anwar-Ijl-Haq. 2020. Growth, yield and water productivity of dry direct seeded rice and transplanted aromatic rice under different irrigation management regimes. Journal of Integrative Agriculture 19 (11):2656–73. doi: 10.1016/S2095-3119(19)62876-5.
  • Jackson, M. L. 1973. Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd., 1st edition, 498. doi: 10.1002/jpln.19590850311.
  • Janaki, C., S. Sailatha, and E. Gunasekaran, 2015. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 144:17–22. doi: 10.1016/j.saa.2015.02.041.
  • Jangid, B., A. Srinivas, R. M. Kumar, T. Ramprakash, T. N. V. K. V. Prasad, K. A. Kumar, S. N. Reddy, and V. K. Dilal. 2019. Influence of zinc oxide nanoparticle foliar application on zinc uptake of rice under different establishment methods. International Journal of Chemical Studies 7 (1):257–61. doi: 10.22271/chemi.
  • Jat, H. S., A. Datta, P. C. Sharma, V. Kumar, A. K. Yadav, M. Choudhary, V. Choudhary, M. K. Gathala, D. K. Sharma, M. L. Jat, et al. 2018. Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Archiv Fur Acker- Und Pflanzenbau Und Bodenkunde 64 (4):531–45. doi: 10.1080/03650340.2017.1359415.
  • Jusoh, M. L. C., L. A. Manaf, and P. A. Latiff. 2013. Composting of rice straw with effective microorganisms (em) and its influence on compost quality. Iranian Journal of Environmental Health Science & Engineering 10 (1):17. doi: 10.1186/1735-2746-10-17.
  • Kahsay, M. H. 2021. Synthesis and characterization of ZnO nanoparticles using aqueous extract of Becium grandiflorum for antimicrobial activity and adsorption of methylene blue. Applied Water Science 11 (2):45. doi: 10.1007/s13201-021-01373-w.
  • Kaur, M., D. P. Malik, G. S. Malhi, V. Sardana, N. S. Bolan, R. Lal, and K. H. M. Siddique. 2022. Rice residue management in the Indo-Gangetic Plains for climate and food security. A review. Agronomy for Sustainable Development 42 (5):92. doi: 10.1007/s13593-022-00817-0.
  • Kavitha, P., and P. Subramanian. 2007. Bio-active compost - A value added compost with microbial inoculants and organic additives. Journal of Applied Sciences 7 (17):2514–8. doi: 10.3923/jas.2007.2514.2518.
  • Lakshmi, P. V., S. K. Singh, B. Pramanick, M. Kumar, R. Laik, A. Kumari, A. K. Shukla, A. A. H. Abdel Latef, O. M. Ali, and A. Hossain. 2021. Long-term zinc fertilization in calcareous soils improves wheat (Triticum aestivum L.) productivity and soil zinc status in the rice–wheat cropping system. Agronomy 11 (7):1306. doi: 10.3390/agronomy11071306.
  • Lal, R. 2013. Food security in a changing climate. Ecohydrology & Hydrobiology 13 (1):8–21. doi: 10.1016/j.ecohyd.2013.03.006.
  • Li, M., X. W. Yang, X. H. Tian, S. X. Wang, and Y. L. Chen. 2014. Effect of nitrogen fertilizer and foliar zinc application at different growth stages on zinc translocation and utilization efficiency in winter wheat. Cereal Research Communications 42 (1):81–90. doi: 10.1556/CRC.2013.0042.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42 (3):421–8. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Liu, Y. M., D. Y. Liu, Q. Y. Zhao, W. Zhang, X. X. Chen, S. J. Xu, and C. Q. Zou. 2020. Zinc fractions in soils and uptake in winter wheat as affected by repeated applications of zinc fertilizer. Soil and Tillage Research 200:104612. doi: 10.1016/j.still.2020.104612.
  • Loneragan, J. F., and M. J. Webb. 1993. Interactions between zinc and other nutrients affecting the growth of plants. In Robson, A. D. (Eds.), Developments in plant and soil sciences, 55. doi: 10.1007/978-94-011-0878-2_9.
  • Mahamuni, P. P., P. M. Patil, M. J. Dhanavade, M. V. Badiger, P. G. Shadija, A. C. Lokhande, and R. A. Bohara. 2019. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochemistry and Biophysics Reports 17:71–80. doi: 10.1016/j.bbrep.2018.11.007.
  • Mandal, L. N., and B. Mandal. 1986. Zinc fractions in soils in relation to zinc nutrition of low land rice. Soil Science 142 (3):141–8. doi: 10.1097/00010694-198609000-00003.
  • Mandal, M., and D. K. Das. 2013. Zinc in rice-wheat irrigated ecosystem. Journal of Rice Research 1:111. doi: 10.4172/2375-4338.1000111.
  • Mazhar, M., M. Ishtiaq, I. Hussain, A. Parveen, K. Hayat Bhatti, M. Azeem, S. Thind, M. Ajaib, M. Maqbool, T. Sardar, et al. 2022. Seed nano-priming with Zinc Oxide nanoparticles in rice mitigates drought and enhances agronomic profile. PloS One 17 (3):e0264967. doi: 10.1371/journal.pone.0264967.
  • Mondal, S., S. Kumar, A. A. Haris, S. K. Dwivedi, B. P. Bhatt, and J. S. Mishra. 2016. Effect of different rice establishment methods on soil physical properties in drought-prone, rainfed lowlands of Bihar, India. Soil Research 54 (8):997–1006. doi: 10.1071/SR15346.
  • Muthukumararaja, T., and M. V. Sriramachandrasekharan. 2019. Effect of zinc fertilization on rice yield and chemical fraction in soil. Journal of Emerging Technologies and Innovative Research 6 (6):405–14. http://www.jetir.org/papers/JETIR1906B63.pdf.
  • Nadeem, F., and M. Farooq. 2019. Application of micronutrients in rice-wheat cropping systems of South Asia: A review. Rice Science 26 (6):356–71. doi: 10.1016/j.rsci.2019.02.002.
  • Nath, D. J., B. Ozah, R. Baruah, R. C. Barooah, D. K. Borah, and M. Gupta. 2012. Soil enzymes and microbial biomass carbon under rice-toria sequence as influenced by nutrient management. Journal of Indian Society of Soil Science 60 (1):20–4.
  • NRRI 2013. Rice production challenges. Vision 2050 of National Rice Research Institute; pp 10–4.
  • Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
  • Pal, S., S. Mondal, J. Maity, and R. Mukherjee. 2018. Synthesis and Characterization of ZnO Nanoparticles using Moringa Oleifera Leaf Extract: Investigation of Photocatalytic and Antibacterial Activity. International Journal of Nanoscience and Nanotechnology 14 (2):111–9.
  • Patnaik, M. C., A. S. Raju, and B. Raj. 2011. Zinc requirement of hybrid rice-bhendi and its influence on zinc fractions in an Alfisol of Hyderabad. Andhra Pradesh. Journal of Indian Society of Soil Science 59 (4):368–75.
  • Rahale, C. S. 2019. Evolving appropriate zinc fertilization strategy for rice-rice (Oryza sativa) cropping system in Cauvery delta zone. Oryza-An International Journal on Rice 56 (3):294–304. doi: 10.35709/ory.2019.56.3.5.
  • Raliya, R., and J. C. Tarafdar. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agricultural Research 2 (1):48–57. doi: 10.1007/s40003-012-0049-z.
  • Pavithra, G. J., B. H. Rajashekar Reddy, M. Salimath, K. N. Geetha, and A. G. Shankar. 2017. Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. Indian Journal of Plant Physiology 22 (3):287–94. doi: 10.1007/s40502-017-0303-2.
  • Rehman, H. U., T. Aziz, M. Farooq, A. Wakeel, and Z. Rengel. 2012. Zinc nutrition in rice production systems: A review. Plant and Soil 361 (1-2):203–26. doi: 10.1007/s11104-012-1346-9.
  • Sharma, B. R., A. Gulati, G. Mohan, S. Manchanda, I. Ray, and U. Amarasinghe. 2018. Water productivity mapping of major Indian crops. New Delhi: National Bank for Agriculture and Rural Development, P1–182.
  • Shivay, Y. S., and R. Prasad. 2012. Zinc-coated urea improves productivity and quality of basmati rice (Oryza sativa L.) under zinc stress condition. Journal of Plant Nutrition 35 (6):928–51. doi: 10.1080/01904167.2012.663444.
  • Simarmata, T., T. Turmuktini, B. N. Fitriatin, and M. R. Setiawati. 2016. Application of bio ameliorant and biofertilizers to increase the soil health and rice productivity. HAYATI Journal of Biosciences 23 (4):181–4. doi: 10.1016/j.hjb.2017.01.001.
  • Singh, K., M. Madhusudanan, and N. Ramawat. 2019a. Synthesis and characterization of zinc oxide nanoparticles (ZnO NPs) and their effect on growth, Zn content and yield of rice (Oryza sativa L.). Journal of Multidiscipline Engineering Science and Technology 6 (3):9750–4.
  • Singh, P. D., R. Prabha, S. Renu, P. K. Sahu, and V. Singh. 2019b. Agrowaste bioconversion and microbial fortification have prospects for soil health, crop productivity, and eco-enterprising. International Journal of Recycling of Organic Waste in Agriculture 8 (S1):457–72. doi: 10.1007/s40093-019-0243-0.
  • Singh, V. 2018. Transformation of native and applied zinc in alluvial soils under submerged condition. Annals of Plant and Soil Research 20 (3):268–71.
  • Singh, V., and S. R. Umashankar. 2018. Zinc fractions in paddy soils and their relationship with soil properties. Annals of Plant and Soil Research 20 (2):148–52.
  • Singh, Y., B. Singh, and J. Timsina. 2005. Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Advances in Agronomy 85:269–407. doi: 10.1016/S0065-2113(04)85006-5.
  • Soltani, S. M., M. M. Hanafi, S. A. Wahid, and S. M. S. Kharidah. 2015. Zinc fractionation of tropical paddy soils and their relationships with selected soil properties. Chemical Speciation & Bioavailability 27 (2):53–61. doi: 10.1080/09542299.2015.1023091.
  • Stanford, G., and L. English. 1949. Use of the flame photometer in rapid soil tests for K and Ca. Agronomy Journal 41 (9):446–7. doi: 10.2134/agronj1949.00021962004100090012x.
  • Subbiah, B. V., and G. L. Asija. 1956. A rapid procedure for the estimation of available nitrogen in soils. Current Science 25:259–60.
  • Suganya, A., A. Saravanan, and N. Manivannan. 2020. Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Communications in Soil Science and Plant Analysis 51 (15):2001–21. doi: 10.1080/00103624.2020.1820030.
  • Tang, Z., L. Zhang, N. He, D. Gong, H. Gao, Z. Ma, L. Fu, M. Zhao, H. Wang, C. Wang, et al. 2021. Soil bacterial community as impacted by addition of rice straw and biochar. Scientific Reports 11 (1):22185. doi: 10.1038/s41598-021-99001-9.
  • Vance, E. D., P. C. Brookes, and D. S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19 (6):703–7. doi: 10.1016/0038-0717(87)90052-6.
  • Vijayakumar, P., S. Ramaiyan, and R. A. B. Balasubramanian. 2021. Soil fertility and nutrient uptake of rice influenced by Plant Growth Promoting Microbes, Seaweed extract and Humic acid fortified in situ rice residue compost. International Journal of Recycling Organic Waste in Agriculture 10 (3):215–32. doi: 10.30486/IJROWA.2021.1916550.1169.
  • Walkley, A., and C. A. Black. 1934. An examination of the wet acid method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Science 37 (1):29–38. doi: 10.1097/00010694-193401000-00003.
  • Wijebandara, D. M. D. I., G. S. Dasog, and P. L. Patill. 2014. Transformation of applied Zn in a flooded soil in a rainfed ecosystem. Journal of Soil Science Society of Srilanka 24:1–7.
  • Yadav, D. B., A. Yadav, A. K. Vats, G. Gill, and R. K. Malik. 2021. Direct seeded rice in sequence with zero-tillage wheat in north-western India: Addressing system-based sustainability issues. SN Applied Sciences 3 (11):844. doi: 10.1007/s42452-021-04827-7.
  • Yang, G., H. Yuan, H. Ji, H. Liu, Y. Zhang, G. Wang, L. Chen, and Z. Guo. 2021. Effect of ZnO nanoparticles on the productivity, Zn biofortification, and nutritional quality of rice in a life cycle study. Plant Physiology and Biochemistry : PPB 163:87–94. doi: 10.1016/j.plaphy.2021.03.053.
  • Yoshida, S., D. A. Forno, J. H. Cock, and K. A. Gomez. 1976. Routine procedure for growing rice plants in culture solution. Laboratory manual for physiological studies in rice, 3rd edn. International Rice Research Institute, Manila, pp 61–6.
  • Yuvaraj, M., and K. S. Subramanian. 2018. Development of slow release Zn fertilizer using nano-zeolite as carrier. Journal of Plant Nutrition 41 (3):311–20. doi: 10.1080/01904167.2017.1381729.
  • Yuvaraj, M., and K. S. Subramanian. 2021. Carbon sphere-zinc sulphate nanohybrids for smart delivery of zinc in rice (Oryza sativa L). Scientific Reports 11 (1):9508. doi: 10.1038/s41598-021-89092-9.
  • Zhang, H., R. Wang, Z. Chen, P. Cui, H. Lu, Y. Yang, and H. Zhang. 2021. The effect of zinc oxide nanoparticles for enhancing rice (Oryza sativa L.) yield and quality. Agriculture 11 (12):1247.doi: 10.3390/agriculture11121247.
  • Zulfiqar, U., S. Hussain, M. Maqsood, M. Ishfaq, and N. Ali. 2020a. Zinc nutrition to enhance rice productivity, zinc use efficiency, and grain biofortification under different production systems. Crop Science 61 (1):739–49. doi: 10.1002/csc2.20381.
  • Zulfiqar, U., S. Hussain, M. Ishfaq, A. Matloob, N. Ali, M. Ahmad, M. N. Alyemeni, and P. Ahmad. 2020b. Zinc-induced effects on productivity, zinc use efficiency, and grain biofortification of bread wheat under different tillage permutations. Agronomy 10 (10):1566. doi: 10.3390/agronomy10101566.
  • Zulfiqar, U., M. Maqsood, S. Hussain, and M. Anwar-Ul-Haq. 2020c. Iron nutrition improves productivity, profitability and biofortification of bread wheat under conventional and conservation tillage systems. Journal of Soil Science and Plant Nutrition 20 (3):1298–310. doi: 10.1007/s42729-020-00213-1.
  • Zulfiqar, U., S. Hussain, M. Ishfaq, N. Ali, M. U. Yasin, and M. A. Ali. 2021. Foliar manganese supply enhances crop productivity, net benefits, and grain manganese accumulation in direct-seeded and puddled transplanted rice. Journal of Plant Growth Regulation 40 (4):1539–56. doi: 10.1007/s00344-020-10209-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.