112
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Sulfur fertilization enhanced productivity and profitability of popular kenaf varieties

, , , , , , , , & show all
Pages 4156-4170 | Received 17 Jun 2022, Accepted 23 May 2023, Published online: 16 Jun 2023

References

  • Abdallah, M., L. Dubousset, F. Meuriot, P. Etienne, J. Avice, and A. Ourry. 2010. Effect of mineral sulfur availability on nitrogen and sulfur uptake and remobilization during the vegetative growth of Brassica napus L. Journal of Experimental Botany 61 (10):2635–46. doi: 10.1093/jxb/erq096.
  • Akinrotimi, C. A., and P. I. Okocha. 2018. Evaluation of genetic divergence in kenaf (H. cannabinus L.) genotypes using agro-morphological characteristics. Journal of Plant Sciences and Agricultural Research 2 (12):1–10.
  • Alexopoulou, E., D. Li, Y. Papatheohari, H. Siqi, D. Scordia, and G. Testa. 2015. How kenaf (Hibiscus cannabinus L.) can achieve high yields in Europe and China. Industrial Crops and Products 68:131–40. doi: 10.1016/j.indcrop.2014.10.027.
  • Assefa, S., W. Haile, and W. Tena. 2021. Effects of phosphorus and sulfur on yield and nutrient uptake of wheat (Triticum aestivum L.) on Vertisols, North Central, Ethiopia. Heliyon 7 (3):e06614. PMID: 33869850; PMCID: PMC8035519. doi: 10.1016/j.heliyon.2021.e06614.
  • Al-Mamun, M., M. Rafii, Y. Oladosu, A. B. Misran, Z. Berahim, Z. Ahmad, F. Arolu, and M. H. Khan. 2022. Genetic diversity among kenaf mutants as revealed by qualitative and quantitative traits. Journal of Natural Fibers 19 (11):4170–87. doi: 10.1080/15440478.2020.1856268.
  • Al-Mamun, M., M. Y. Rafii, A. B. Misran, Z. Berahim, Z. Ahmad, M. M. H. Khan, Y. Oladosu, and F. Arolu. 2023. Kenaf (Hibiscus Cannabinus L.): A promising fiber crop with potential for genetic improvement utilizing both conventional and molecular approaches. Journal of Natural Fibers 20 (1):2145410. doi: 10.1080/15440478.2022.2145410.
  • Aulakh, M. S. 2003. Crop responses to sulphur nutrition. In: Sulphur in plants, ed. Abrol, Y.P., and Ahmad, A. Dordrecht: Springer. doi: 10.1007/978-94-017-0289-8_19.
  • Ayadi, R., M. Hanana, R. Mzid, L. Hamrouni, M. L. Khouja, and A. Salhi Hanachi. 2016. Hibiscus cannabinus L.–kenaf: A review paper. Journal of Natural Fibers 14 (4):1–19. doi: 10.1080/15440478.2016.1240639.
  • Bahtoee, A., K. Zargari, and E. Baniani. 2012. An investigation on fiber production of different kenaf (Hibiscus cannabinus L.) genotypes. World Applied Sciences Journal 16 (1):63–6.
  • Basumatary, A., J. J. Shangne, K. N. Das, and D. Bhattacharyya. 2018. Impact of sulfur fertilization on distribution of sulfur fractions and use efficiency in blackgram in subtropical acidic soil of Assam, India. Journal of Plant Nutrition 41 (11):1436–43. doi: 10.1080/01904167.2018.1457683.
  • Basumatary, A., S. Chauhan, I. Bhupenchandra, K. Das, and D. Ozah. 2021. Impact of sulfur and boron fertilization on yield, quality of crop and nutrient use efficiencies in rapeseed in subtropical acidic soil of Assam, India. Journal of Plant Nutrition 44 (12):1779–93. doi: 10.1080/01904167.2021.1884708.
  • Black, C. A. 1965. Methods of soil analysis Part 2. Madison: American Society of Agronomy Inc.
  • Bohn, H. L., R. A. Myer, and G. A. O’Connor. 2001. Soil chemistry. 3rd ed. New York: Wiley.
  • Carciochi, W. D., F. Salvagiotti, A. Pagani, N. I. R. Calvo, M. Eyherabide, H. R. S. Rozas, and I. A. Ciampitti. 2020. Nitrogen and sulfur interaction on nutrient use efficiencies and diagnostic tools in maize. European Journal of Agronomy 116:126045. doi: 10.1016/j.eja.2020.126045.
  • Carciochi, W. D., N. Wyngaard, G. A. Divito, N. I. R. Calvo, M. L. Cabrera, and H. E. Echeverría. 2016. Diagnosis of sulfur availability for corn based on soil analysis. Biology and Fertility of Soils 52 (7):917–26. doi: 10.1007/s00374-016-1130-8.
  • Diwakar, H. G., B. C. Dhananjaya, T. Jayanthi, M. V. Ravi, and R. Siddaramappa. 2014. Transformation of S fractions under field conditions with groundnut (Arachis hypogaea L.) in an Alfisol of Karnataka. Communications in Soil Science and Plant Analysis 45 (9):1269–77. doi: 10.1080/00103624.2014.884105.
  • Dutt, A. K. 1962. Sulphur deficiency of jute. Tropical Agriculture (Trinidad) 39 (1):73–6.
  • Evans, C. A., and C. C. Rost. 1945. Total organic sulphur and humus sulphur of Minnesota soils. Soil Science 59 (2):125–38. doi: 10.1097/00010694-194502000-00003.
  • Fageria, N. K., V. C. Baligar, and C. Jones. 1997. Growth and mineral nutrition of field crops, 494. 2nd ed. New York: Marcel Dekker, Inc.
  • Girondé, A., L. Dubousset, J. Trouverie, P. Etienne, and J. C. Avice. 2014. The impact of sulfate restriction on seed yield and quality of winter oilseed rape depends on the ability to remobilize sulfate from vegetative tissues to reproductive organs. Frontiers in Plant Science 5:695. doi: 10.3389/fpls.2014.00695.
  • Gomez, K. A., and A. A. Gomez. 1984. Statistical procedures for agricultural research. Hoboken: John Wiley and Sons.
  • Gourav Sankhyan, N. K., R. P. Sharma, and G. D. Sharma. 2018. Vertical distribution of sulfur fractions in a continuously fertilized acid Alfisol under maize–wheat cropping system. Communications in Soil Science and Plant Analysis 49 (8):923–33. doi: 10.1080/00103624.2018.1448409.
  • Guo, Y., Q. Xiao, X. Zhao, Z. Wu, Z. Dai, M. Zhang, Q. Caisheng, S. Long, and Y. F. Wang. 2023. Phytoremediation with kenaf (Hibiscus cannabinus L.) for cadmium-contaminated paddy soil in southern China: Translocation, uptake, and assessment of cultivars. Environmental Science and Pollution Research 30 (1):1244–52. doi: 10.1007/s11356-022-22111-y.
  • Hamidon, M. H., M. T. Sultan, A. H. Ariffin, and A. U. Shah. 2019. Effects of fiber treatment on mechanical properties of kenaf fiber reinforced composites: A review. Journal of Materials Research and Technology 8 (3):3327–37. doi: 10.1016/j.jmrt.2019.04.012.
  • Haneklaus, S., E. Bloem, and E. Schnug. 2007. Sulfur interactions in crop ecosystems. In Sulfur in Plants an Ecological Perspective, ed. M. J. Hawkesford, and L. J. De Kok, 17–58. Germany: Springer. doi: 10.1007/978-1-4020-5887-5_2.
  • Hussain, S. G. 1990. Sulfur in Bangadesh agriculture. Sulfur Agriculture 14:25–8.
  • Jackson, M. L. 1973. Soil chemical analysis, 485. New Delhi: Prentice Hall of India Private Limited.
  • Kour, S., V. K. Jalali, S. Arora, A. S. Bali, and M. Gupta. 2014. Direct and residual effect of sulfur fertilization on yield, uptake and use efficiency in Indian mustard and succeeding rice crop. Journal of Plant Nutrition 37 (14):2291–301. doi: 10.1080/01904167.2014.920389.
  • Kumar, S., and A. K. Ghorai. 2017. Sulphur is crucial for jute production. www.krishisewa.com.
  • Lavanya, K., G. Kadalli, S. J. Patil, T. Jayanthi, D. Naveen, and R. Channabasavegowda. 2019. Sulphur fractionation studies in soils of long-term fertilizer experiment under finger millet – Maize cropping sequence. International Journal of Current Microbiology and Applied Sciences 8 (09):1334–45. doi: 10.20546/ijcmas.2019.809.153.
  • Magorzata, S., and Z. Lucyna. 2009. Effect of different rates and forms of sulfur on content of available phosphorus in soil. Journal of Elementology 14:795–803.
  • Mahapatra, B. A., A. Saha, A. Majumdar, S. Mitra, B. Majumdar, H. Choudhury, and M. Sinha. 2009. Improving yield and quality of jute and allied fibres through secondary and micronutrients. Indian Journal of Fertilisers 5:124–8.
  • Maji, B., N. C. Sahu, I. Das, S. Saha, S. Sarkar, and S. Saha. 2013. Enhancing jute productivity through balanced fertilization with sulfur in some sulfur deficient areas of West Bengal, India. Indian Journal of Agricultural Research 47:100–7.
  • Majumdar, B., S. Saha, A. R. Saha, and S. Sarkar. 2016. Interactive effect of Sulfur and nitrogen on fiber yield, nutrient uptake and quality of jute (Corchorus olitorius). Environment and Ecology 34 (3A):1144–9.
  • Mazumdar, S. P., D. K. Kundu, D. Datta, B. Majumdar, N. M. Alam, A. R. Saha, S. Sarkar, and S. Mitra. 2023. Can sulfur improve the fiber yield of jute? Journal of Plant Nutrition 46 (6):943–57. doi: 10.1080/01904167.2022.2071737.
  • Ali, M. S., M. N. Gani, and M. M. Islam. 2017. Efficiency of BJRI kenaf-4 yield under different fertilizer levels. American Journal of Agriculture and Forestry 5 (5):145–9. doi: 10.11648/j.ajaf.20170505.12.
  • Mehmood, M. Z., O. Afzal, M. Ahmed, G. Qadir, A. M. Kheir, M. A. Aslam, A. M. U. Din, I. Khan, M. J. Hassan, T. A. Meraj, et al. 2021. Can sulfur improve the nutrient uptake, partitioning, and seed yield of sesame? Arabian Journal of Geosciences 14 (10):865. doi: 10.1007/s12517-021-07229-6.
  • Messick, D. L. 2013. World sulfur outlook. Washington: The World Sulfur Institute. http://www.firt.org.
  • Mohammed, M., A. R. Rozyanty, A. F. Osman, T. Adam, U. Hashim, A. M. Mohammed, N. Z. Noriman, O. S. Dahham, and B. O. Betar. 2017. The weathering effect in natural environment on kenaf bast filled unsaturated polyester composite and integration of nano zinc particle for water repellent. Micro and Nanosystems 9 (1):16–27. doi: 10.2174/1876402909666170531075138.
  • Motior, M., A. Abdou, F. H. Al Darwish, K. A. El-Tarabily, M. A. Awad, F. Golam, and M. Sofian-Azirun. 2011. Influence of elemental sulfur on nutrient uptake, yield and quality of cucumber grown in sandy calcareous soil. Australian Journal of Crop Science 5:1610–5.
  • Mukhtar, A., M. I. Awan, S. Sadaf, A. Mahmood, T. Javed, A. N. Shah, R. Shabbir, S. S. Alotaibi, A. A. Shah, R. Adamski, et al. 2022. Sulfur enhancement for the improvement of castor bean growth and yield, and sustainable biodiesel production. Frontiers in Plant Science 13:905738. PMID: 35860539; PMCID: PMC9289615. doi: 10.3389/fpls.2022.905738.
  • Narayan, O. P., P. Kumar, B. Yadav, M. Dua, and A. K. Johri. 2022. Sulfur nutrition and its role in plant growth and development. Plant Signaling & Behavior. doi: 10.1080/15592324.2022.2030082.
  • Rasool, F. U., B. Hassan, and I. A. Jahangir. 2013. Growth and yield of sunflower (Helianthus annus L.) as influenced by nitrogen, sulfur and farmyard manure under temperate conditions. SAARC Journal of Agriculture 11 (1):81–9. doi: 10.3329/sja.v11i1.18386.
  • Saba, N., M. Jawaid, K. R. Hakeem, M. T. Paridah, A. Khalina, and O. Y. Alothman. 2015. Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective. Renewable and Sustainable Energy Reviews 42:446–59. doi: 10.1016/j.rser.2014.10.029.
  • Santisree, P., S. S. Adimulam, P. Bommineni, P. Bhatnagar-Mathur, and K. K. Sharma. 2019. Hydrogen sulfide in plant abiotic stress tolerance: Progress and perspectives. In Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms, 743–75. New York: John Wiley & Sons.
  • Shah, S. H., S. Islam, and F. Mohammad. 2022. Sulphur as a dynamic mineral element for plants: A review. Journal of Soil Science and Plant Nutrition 22 (2):2118–43. doi: 10.1007/s42729-022-00798-9.
  • Shil, S. 2019. Developing agro-morphological descriptors of mesta (Hibiscus spp. L.) varieties for germplasm evaluation and characterization as per DUS test guidelines. Journal of Crop and Weed 15:25–39.
  • Singh, A. K., M. Kumar, and S. Mitra. 2018. Carbon footprint and energy use in jute and allied fiber production. The Indian Journal of Agricultural Sciences 88 (8):1305–11. doi: 10.56093/ijas.v88i8.82579.
  • Singh, A. K., M. K. Meena, R. C. Bharati, and R. M. Gade. 2013. Effect of sulfur and zinc management on yield, nutrient uptake, changes in soil fertility and economics in rice (Oryza sativa)–lentil (Lens culinaris) cropping system. Indian Journal of Agricultural Sciences 83 (3):344–8.
  • Singh, S., and M. Singh. 2014. Effect of sulfur fertilization on sulfur balance in soil and productivity of wheat in a wheat–rice cropping system. Agricultural Research 3 (4):284–92. doi: 10.1007/s40003-014-0124-8.
  • Singh, R., P. Parihar, and S. M. Prasad. 2018. Sulfur and calcium simultaneously regulate photosynthetic performance and nitrogen metabolism status in As-challenged Brassica juncea L. seedlings. Frontiers in Plant Science 9:772. doi: 10.3389/fpls.2018.00772.
  • Singh, B. P. 2013. Biofuel crops: Production, physiology, and genetics. Boston: CABI.
  • Srinivasarao, C., A. N. Ganeshamurthy, M. Ali, R. N. Singh, and K. K. Singh. 2004. Sulfur fractions, distribution, and their relationships with soil properties in different soil types of major pulse-growing regions of India. Communications in Soil Science and Plant Analysis 35 (19–20):2757–69. doi: 10.1081/CSS-200036435.
  • Steffenson, D. 1954. Irregularities of chromosome division in Tradescantia grown on low sulfate. Experimental Cell Research 6:554–6.
  • Stevenson, F. J. 1986. Cycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients. New York: Environmental Science. John Wiley and Sons.
  • Subbiah, B. V., and G. L. Asija. 1956. A rapid procedure for estimation of available nitrogen in soils. Current Science 25:259–60.
  • Takahashi, H., S. Kopriva, M. Giordano, K. Saito, and R. Hell. 2011. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology 62:157–84. doi: 10.1146/annurev-arplant-042110-103921.
  • Tandon, H. L. S. 1993. Methods of analysis of soils, plants, water and fertilizers. New Delhi: Fertilizer Development and Consultation Organization.
  • Tharazi, I., A. B. Sulong, N. Muhamad, C. H. C. Haron, D. Tholibon, N. F. Ismail, M. K. F. M. Radzi, and Z. Razak. 2017. Optimization of hot press parameters on tensile strength for unidirectional long kenaf fiber reinforced polylactic-acid composite. Procedia Engineering 184:478–85. doi: 10.1016/j.proeng.2017.04.150.
  • Tripathi, N. 2003. Role of FCO in promoting quality secondary and micronutrients. Fertiliser News 48:111–4.
  • Williams, C. H., and A. Steinberg. 1959. Soil sulfur fractions as chemical indices of available sulfur in some Australian soils. Australian Journal of Agricultural Research 10 (3):340–52. doi: 10.1071/AR9590340.
  • Zenda, T., S. Liu, A. Dong, and H. Duan. 2021. Revisiting sulphur—The once neglected nutrient: It’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture 11 (7):626. doi: 10.3390/agriculture11070626.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.