166
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Agronomic biofortification of common bean (Phaseolus vulgaris L.) cultivated in Oxisol with soil- and foliar-applied zinc

, , , , , & show all
Pages 4377-4400 | Received 19 Jul 2022, Accepted 21 Jun 2023, Published online: 03 Jul 2023

References

  • Alencar, L. P., G. C. Sediyama, E. C. Mantovani, and M. A. Martinez. 2011. Recent trends in the weather elements and its implications in the maize crop evapotranspiration in Viçosa-MG, Brazil. Engenharia Agrícola 31 (4):631–42. doi:10.1590/S0100-69162011000400002.
  • Alvarez V. V. H., L. E. Dias, A. C. Ribeiro, and R. B. Souza. 1999. Uso de gesso agrícola. In Recomendação para o uso de corretivos e fertilizantes em Minas Gerais: 5a Aproximação, ed. A. C. Ribeiro, P. T. G. Guimarães, and V. V. H. Alvarez, 67–78. Viçosa, MG: Comissão de Fertilidade do Solo do Estado de Minas Gerais.
  • Andrejić, G., G. Gajić, M. Prica, Ž. Dželetović, and T. Rakić. 2018. Zinc accumulation, photosynthetic gas exchange, and chlorophyll a fluorescence in Zn-stressed Miscanthus × giganteus plants. Photosynthetica 56 (4):1249–58. doi:10.1007/s11099-018-0827-3.
  • Anjos, D. N., R. C. Vasconcelos, H. T. A. Mendes, A. S. A. Alcantara, and A. E. S. Viana. 2015. Biostimulants, macro and micronutrient fertilizer influence on common bean crop in Vitória da Conquista-Ba. Brazil. African Journal of Agricultural Research 10 (16):1891–7. doi:10.5897/AJAR2014.9359.
  • Baarz, B. R., and L. Rink. 2022. Rebalancing the unbalanced aged immune system – A special focus on zinc. Ageing Research Reviews 74:101541. doi:10.1016/j.arr.2021.101541.
  • Baligah, H. U., S. A. Mir, P. Sofi, and A. H. Mir. 2020. Grain zinc phytic acid and nutrient uptake in common bean is influenced by sources and concentrations of zinc fertilization. International Research Journal of Pure and Applied Chemistry 21 (10):9–17. doi:10.9734/irjpac/2020/v21i1030202.
  • Barberon, M., and N. Geldner. 2014. Radial transport of nutrients: The plant root as a polarized epithelium. Plant Physiology 166 (2):528–37. doi:10.1104/pp.114.246124.
  • Beebe, S. E., I. M. Rao, M. W. Blair, and J. A. Acosta-Gallegos. 2013. Phenotyping common beans for adaptation to drought. Frontiers in Physiology 4:1–20. doi:10.3389/fphys.2013.00035.
  • Bloem, E., S. Haneklaus, R. Haensch, and E. Schnug. 2017. EDTA application on agricultural soils affects microelement uptake of plants. The Science of the Total Environment 577:166–73. doi:10.1016/j.scitotenv.2016.10.153.
  • Broughton, W. J., G. Hernandez, M. Blair, S. Beebe, P. Gepts, and J. Vanderleyden. 2003. Beans (Phaseolus spp.) – model food legumes. Plant and Soil 252 (1):55–128. doi:10.1023/A:1024146710611.
  • Buturi, C. V., R. P. Mauro, V. Fogliano, C. Leonardi, and F. Giuffrida. 2023. Iron and zinc biofortification and bioaccessibility in carrot ‘Dordogne’: Comparison between foliar applications of chelate and sulphate forms. Scientia Horticulturae 312:111851. doi:10.1016/j.scienta.2023.111851.
  • Cabral, L., P. Pandey, and X. Xu. 2022. Epic narratives of the green revolution in Brazil, China, and India. Agriculture and Human Values 39 (1):249–67. doi:10.1007/s10460-021-10241-x.
  • Cakmak, I. 2009. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India. Journal of Trace Elements in Medicine and Biology : organ of the Society for Minerals and Trace Elements (GMS) 23 (4):281–9. doi:10.1016/j.jtemb.2009.05.002.
  • Cakmak, I., and U. B. Kutman. 2018. Agronomic biofortification of cereals with zinc: A review. European Journal of Soil Science 69 (1):172–80. doi:10.1111/ejss.12437.
  • Cambraia, T. L. L., R. L. F. Fontes, L. Vergütz, R. F. Vieira, J. C. L. Neves, P. S. Corrêa Netto, and R. F. N. Dias. 2019. Agronomic biofortification of common bean grain with zinc. Pesquisa Agropecuária Brasileira 54:1–7. doi:10.1590/s1678-3921.pab2019.v54.01003.
  • Cardoso, F. R., A. H. A. Galante, I. R. Teixeira, A. G. Silva, and E. F. Reis. 2013. Sources and doses of zinc on beans and castor beans nutrition and production under intercropping. Revista Brasileira de Ciências Agrárias – Brazilian Journal of Agricultural Sciences 8 (4):602–9. doi:10.5039/agraria.v8i4a3417.
  • Carvalho, A. M. X., F. Q. Mendes, F. Q. Mendes, and L. F. Tavares. 2020. SPEED Stat: A free, intuitive, and minimalist spreadsheet program for statistical analyses of experiments. Crop Breeding and Applied Biotechnology 20 (3):1–6. doi:10.1590/1984-70332020v20n3s46.
  • Cervera-Mata, A., A. Fernández-Arteaga, M. Navarro-Alarcón, D. Hinojosa, S. Pastoriza, G. Delgado, and J. Á. Rufián-Hernares. 2021. Spent coffee grounds as a source of smart biochelates to increase Fe and Zn levels in lettuces. Journal of Cleaner Production 328:129548. doi:10.1016/j.jclepro.2021.129548.
  • Charishma, D. S., M. V. Ravi, S. R. Balanagoudar, H. Veeresh, and S. Hiregoudar. 2022. Effect of nano zinc application on uptake of major nutrients in rabi sorghum (Sorghum bicolor L.). The Pharma Innovation Journal 11 (7):1608–11.
  • Chaturvedi, R., P. Favas, J. Pratas, M. Varun, and M. S. Paul. 2019. EDTA-assisted metal uptake in Raphanus sativus L. and Brassica oleracea L.: Assessment of toxicity and food safety. Bulletin of Environmental Contamination and Toxicology 103 (3):490–5. doi:10.1007/s00128-019-02651-9.
  • Cheah, Z. X., S. M. Harper, T. J. O'Hare, P. M. Kopittke, and M. J. Bell. 2022. Improved agronomic biofortification of sweetcorn achieved using foliar rather than soil Zn applications. Cereal Chemistry 99 (4):819–29. doi:10.1002/cche.10539.
  • Chen, Q., M. Zhou, Y. Pan, and Y. Zhang. 2023. Ligand-enhanced zero-valent iron for organic contaminants degradation: A mini review. Processes 11 (2):620. doi:10.3390/pr11020620.
  • Chen, Y. H., Y. Mao, S. B. He, P. Guo, and K. Xu. 2007. Heat stress increases the efficiency of EDTA in phytoextraction of heavy metals. Chemosphere 67 (8):1511–7. doi:10.1016/j.chemosphere.2006.12.016.
  • Consentino, B. B., M. Ciriello, L. Sabatino, L. Vultaggio, S. Baldassano, S. Vasto, Y. Rouphael, S. L. Bella, and S. D. Pascale. 2023. Current acquaintance on agronomic biofortification to modulate the yield and functional value of vegetable crops: A review. Horticulturae 9 (2):219. doi:10.3390/horticulturae9020219.
  • Cunha, T. A., K. M. Vermeulen-Serpa, E. C. Grilo, L. Leite-Lais, J. Brandão-Neto, and S. H. L. Vale. 2022. Association between zinc and body composition: An integrative review. Journal of Trace Elements in Medicine and Biology 71:126940. doi:10.1016/j.jtemb.2022.126940.
  • Dash, P. K., and R. Rai. 2022. Green revolution to grain revolution: Florigen in the frontiers. Journal of Biotechnology 343:38–46. doi:10.1016/j.jbiotec.2021.10.002.
  • Delfni, J., Moda-Cirino, V. Santos Neto, J. Ruas, P. M. Sant’Ana, G. C. Gepts, P, and Gonçalves, L. S. A. 2021. Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm. Scientifc Reports 11 (1):1–12. doi:10.1038/s41598-021-82437-4.
  • Doblas, V. G., N. Geldner, and M. Barberon. 2017. The endodermis, a tightly controlled barrier for nutrients. Current Opinion in Plant Biology 39:136–43. doi:10.1016/j.pbi.2017.06.010.
  • Doolette, C. L., T. L. Read, C. Li, K. G. Scheckel, E. Donner, P. M. Kopittke, J. K. Schjoerring, and E. Lombi. 2018. Foliar application of zinc sulphate and zinc EDTA to wheat leaves: Differences in mobility, distribution, and speciation. Journal of Experimental Botany 69 (18):4469–81. doi:10.1093/jxb/ery236.
  • Drissi, S., A. A. Houssa, A. Bamouh, and M. Benbella. 2015. Corn silage (Zea mays L.) response to zinc foliar spray concentration when grown on sandy soil. Journal of Agricultural Science 7 (2):68–79. doi:10.5539/jas.v7n2p68.
  • Du, W., J. Yang, Q. Peng, X. Liang, and H. Mao. 2019. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 227:109–16. doi:10.1016/j.chemosphere.2019.03.168.
  • El-Badri, A. M., M. Batool, C. Wang, A. M. Hashem, K. M. Tabl, E. Nishawy, J. Kuai, G. Zhou, and B. Wang. 2021. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicology and Environmental Safety 225:112695. doi:10.1016/j.ecoenv.2021.112695.
  • FAOSTAT – Food and Agriculture Organization Corporate Statistical Database. 2021. Accessed February 20, 2021. Food and Agriculture Organization of the United Nations. Crops 2019. http://www.fao.org/faostat/en/#data/QC.
  • Franco, A., S. Buoso, L. Zanin, R. Pinton, and N. Tomasi. 2023. Copper toxicity in maize: The severity of the stress is reduced depending on the applied Fe‑chelating agent. Journal of Plant Growth Regulation 42 (3):1567–81. doi:10.1007/s00344-022-10641-1.
  • Franco, I. A. L., H. E. P. Martinez, A. V. Zabini, and P. C. R. Fontes. 2005. Translocation and compartmentation of zinc by ZnSO4 e ZnEDTA applied on coffee and bean seedlings leaves. Ciência Rural 35 (2):332–9. doi:10.1590/S0103-84782005000200013.
  • Garagarza, C., A. Valente, C. Caetano, I. Ramos, J. Sebastião, M. Pinto, T. Oliveira, A. Ferreira, and C. S. Guerreiro. 2022. Zinc deficient intake in hemodialysis patients: A path to a high mortality risk. Journal of Renal Nutrition : The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 32 (1):87–93. doi:10.1053/j.jrn.2021.06.012.
  • Gibson, R. S. 2012. Zinc deficiency and human health: Etiology, health consequences, and future solutions. Plant and Soil 361 (1-2):291–9. doi:10.1007/s11104-012-1209-4.
  • Golden, B. R., J. M. Orlowski, and J. A. Bond. 2016. Corn injury from foliar zinc application does not affect grain yield. Agronomy Journal 108 (5):2071–5. doi:10.2134/agronj2015.0593.
  • Habiba, U., S. Ali, M. Farid, M. B. Shakoor, M. Rizwan, M. Ibrahim, G. H. Abbasi, T. Hayat, and B. Ali. 2015. EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environmental Science and Pollution Research International 22 (2):1534–44. doi:10.1007/s11356-014-3431-5.
  • Hayat, I., A. Ahmad, T. Masud, A. Ahmed, and S. Bashir. 2014. Nutritional and health perspectives of beans (Phaseolus vulgaris L.): An overview. Critical Reviews in Food Science and Nutrition 54 (5):580–92. doi:10.1080/10408398.2011.59663.
  • Hosseinniaee, S., M. Jafari, A. Tavili, S. Zare, and G. Cappai. 2023. EDTA facilitated phytoextraction of Pb, Cd and Zn from a lead–zinc mine contaminated soil by three new accumulator plants (Marrubium cuneatum, Stipa arabica and Verbascum speciosum). Research Square [s.v]:1–19. doi:10.21203/rs.3.rs-2750193/v1.
  • Hovsepyan, A., and S. Greipsson. 2005. EDTA-enhanced phytoremediation of lead-contaminated soil by corn. Journal of Plant Nutrition 28 (11):2037–48. doi:10.1080/01904160500311151.
  • Hussain, S., M. A. Maqsood, and S. Rahmatullah. 2010. Increasing grain zinc and yield of wheat for the developing world: A Review. Emirates Journal of Food and Agriculture 22 (5):329. doi:10.9755/ejfa.v22i5.4821.
  • Jiang, M., S. Liu, Y. Li, X. Li, Z. Luo, H. Song, and Q. Chen. 2019. EDTA-facilitated toxic tolerance, absorption and translocation and phytoremediation of lead by dwarf bamboos. Ecotoxicology and Environmental Safety 170:502–12. doi:10.1016/j.ecoenv.2018.12.020.
  • John, D. A., and G. R. Babu. 2021. Lessons from the aftermaths of green revolution on food system and health. Frontiers in Sustainable Food Systems 5:1–6. doi:10.3389/fsufs.2021.644559.
  • Jongstra, R., M. M. Hossain, V. Galetti, A. G. Hall, R. R. Holt, C. I. Cercamondi, S. F. Rashid, M. B. Zimmermann, M. K. Mridha, and R. Wegmueller. 2022. The effect of zinc-biofortified rice on zinc status of Bangladeshi preschool children: A randomized, double-masked, household-based, controlled trial. The American Journal of Clinical Nutrition 115 (3):724–37. doi:10.1093/ajcn/nqab379.
  • Kachinski, W. D., F. W. Ávila, M. M. L. Muller, A. R. Reis, L. Rampim, and J. C. B. Vidigal. 2020. Nutrition, yield and nutrient export in common bean under zinc fertilization in no-till system. Ciência e Agrotecnologia 44:1–13. doi:10.1590/1413-7054202044029019.
  • Khan, M. K., A. Pandey, M. Hamurcu, S. Gezgin, T. Athar, V. D. Rajput, O. P. Gupta, and T. Minkina. 2021. Insight into the prospects for nanotechnology in wheat biofortification. Biology 10 (11):1123. doi:10.3390/biology10111123.
  • Khan, M. Z., S. Muhammad, M. A. Naeem, E. Akhtar, and M. Khalid. 2006. Response of some wheat (Triticum aestivum L.) varieties to foliar application of N & K under rainfed conditions. Pakistan Journal of Botany 38 (4):1027–34.
  • Khan, S., H. Yu, Q. Li, Y. Gao, B. N. Sallam, H. Wang, P. Liu, and W. Jiang. 2019. Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy 9 (5):266. doi:10.3390/agronomy9050266.
  • Khonje, M. G., J. Ricker-Gilbert, M. Muyanga, and M. Qaim. 2022. Farm-level production diversity and child and adolescent nutrition in rural sub-Saharan Africa: A multicountry, longitudinal study. The Lancet. Planetary Health 6 (5):e391-399–e399. doi:10.1016/S2542-5196(22)00071-7.
  • Kirmani, H. F., M. Hussain, F. Ahmad, M. Shahid, and A. Asghar. 2018. Impact of zinc uptake on morphology, physiology and yield attributes of wheat in Pakistan. Cercetari Agronomice in Moldova 51 (1):29–36. doi:10.2478/cerce-2018-0002.
  • Klikocka, H., and M. Marks. 2018. Sulphur and nitrogen fertilization as a potential means of agronomic biofortification to improve the content and uptake of microelements in spring wheat grain DM. Journal of Chemistry (2018:1–12. doi:10.1155/2018/9326820.
  • Krebs, N. F., L. V. Miller, and K. M. Hambidge. 2014. Zinc deficiency in infants and children: A review of its complex and synergistic interactions. Paediatrics and International Child Health 34 (4):279–88. doi:10.1179/2046905514Y.0000000151.
  • Kumar, B., and S. S. Dhaliwal. 2022. Zinc biofortification of dual-purpose cowpea [Vigna unguiculata (L.) Walp.] for enhancing the productivity and nutritional quality in a semi-arid regions of India. Archives of Agronomy and Soil Science 68 (8):1034–48. doi:10.1080/03650340.2020.1868040.
  • Kundu, A., P. Raha, A. N. Dubey, M. Rani, A. Paul, and R. Patel. 2021. Differential responses of rice (Oryza sativa L.) to foliar fertilization of organic potassium salts. Journal of Plant Nutrition 44 (9):1330–48. doi:10.1080/01904167.2020.1862193.
  • Lorenzon, A. S., H. C. T. Dias, and H. G. Leite. 2013. Net precipitation and interception in a forest fragment with different stages of regeneration. Revista Árvore 37 (4):619–27. doi:10.1590/S0100-67622013000400005.
  • Losa, A., J. Vorster, E. Cominelli, F. Sparvoli, D. Paolo, T. Sala, M. Ferrari, M. Carbonaro, S. Marconi, E. Camilli, et al. 2022. Drought and heat affect common bean minerals and human diet—What we know and where to go. Food and Energy Security 11 (1):1–28. doi:10.1002/fes3.351.
  • Luís, I. C., C. C. Pessoa, A. C. Marques, D. Daccak, A. R. F. Coelho, F. C. Lidon, M. Patanita, M. M. Silva, A. S. Almeida, J. C. Ramalho, et al. 2020. Tissue accumulation and quantification of Zn in biofortified Triticum aestivum grains—Interactions with Mn, Fe, Cu, Ca, K, P and S. 1. Biology and Life Sciences Forum 4 (1):83–7. doi:10.3390/IECPS2020-08711.
  • Miller, D. D., and R. M. Welch. 2013. Food system strategies for preventing micronutrient malnutrition. Food Policy.42:115–28. doi:10.1016/j.foodpol.2013.06.008.
  • Neugschwandtner, R. W., P. Tlustoš, M. Komárek, and J. Száková. 2009. Nutrient mobilization and nutrient contents of Zea mays in response to EDTA additions to heavy-metal-contaminated agricultural soil. Journal of Plant Nutrition and Soil Science 172 (4):520–7. doi:10.1002/jpln.200700328.
  • Novais, R. F., J. C. L. Neves, and N. F. Barros. 1991. Ensaio em ambiente controlado. In Métodos de pesquisa em fertilidade do solo, ed. A. J. Oliveira, W. E. Garrido, J. D. Araújo, and S. Lourenço, 189–253. Brasília, DF: Embrapa-SEA.
  • Nowack, B., R. Schulin, and B. H. Robinson. 2006. Critical assessment of chelant-enhanced metal phytoextraction. Environmental Science & Technology 40 (17):5225–32. doi:10.1021/es0604919.
  • Ohse, S., B. L. A. Rezende, D. Lisik, and R. F. Otto. 2012. Germination and vigor of watermelon seeds treated with zinc. Revista Brasileira de Sementes 34 (2):288–92. doi:10.1590/S0101-31222012000200014.
  • Olmedilla-Alonso, B., M. M. Pedrosa, C. Cuadrado, M. Brito, C. Asensio-S-Manzanera, and C. Asensio-Vegas. 2013. Composition of two Spanish common dry beans (Phaseolus vulgaris), 'Almonga’ and 'Curruquilla’, and their postprandial effect in type 2 diabetics. Journal of the Science of Food and Agriculture 93 (5):1076–82. doi:10.1002/jsfa.5852.
  • Ozturk, L., M. A. Yazici, C. Yucel, A. Torun, C. Cekic, A. Bagci, H. Ozkan, H. J. Braun, Z. Sayers, and I. Cakmak. 2006. Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum 128 (1):144–52. doi:10.1111/j.1399-3054.2006.00737.x.
  • Peramaiyan, P., P. Craufurd, V. Kumar, L. P. Seelan, A. J. McDonald, A. Kishore, S. Singh, B. Singh. 2022. Agronomic biofortification of zinc in rice for diminishing malnutrition in South Asia. Sustainability 14 (13):7747. doi:10.3390/su14137747.
  • Pla, M. F. E., S. K. Flores, and C. E. Genevois. 2020. Innovative strategies and nutritional perspectives for fortifying pumpkin tissue and other vegetable matrices with iron. Food Science and Human Wellness 9 (2):103–11. doi:10.1016/j.fshw.2020.02.005.
  • Prasad, T. N. V. K. V., P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K. R. Reddy, T. S. Sreeprasad, P. R. Sajanlal, and T. Pradeep. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35 (6):905–27. doi:10.1080/01904167.2012.663443.
  • Qiao, X., Y. He, Z. Wang, X. Li, K. Zhang, and H. Zeng. 2014. Effect of foliar spray of zinc on chloroplast β-carbonic anhydrase expression and enzyme activity in rice (Oryza sativa L.) leaves. Acta Physiologiae Plantarum 36 (2):263–72. doi:10.1007/s11738-013-1407-6.
  • Qureshi, F. F., M. A. Ashraf, R. Rasheed, S. Ali, I. Hussain, A. Ahmed, and M. Iqbal. 2020. Organic chelates decrease phytotoxic effects and enhance chromium uptake by regulating chromium-speciation in castor bean (Ricinus communis L.). Science of The Total Environment 716:137061. doi:10.1016/j.scitotenv.2020.137061.
  • Rai-Kalal, P., and A. Jajoo. 2021. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry : PPB 160:341–51. doi:10.1016/j.plaphy.2021.01.032.
  • Ranathunge, K., E. Steudle, and R. Lafitte. 2005. A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.). Plant, Cell and Environment 28 (11):1450–62. doi:10.1111/j.1365-3040.2005.01391.x.
  • Rizwanuddin, S., V. Kumar, B. Naik, P. Singh, S. Mishra, S. Rustagi, and V. Kumar. 2023. Microbial phytase: Their sources, production, and role in the enhancement of nutritional aspects of food and feed additives. Journal of Agriculture and Food Research 12:100559. doi:10.1016/j.jafr.2023.100559.
  • Rodrigues, L. A., P. A. Souza, H. E. P. Martinez, P. R. G. Pereira, and P. C. R. Fontes. 1997. Absorção e translocação de zinco em feijoeiro aplicado via foliar. Revista Brasileira de Fisiologia Vegetal 9 (2):111–5.
  • Sadeghzadeh, B. 2013. A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition 13 (ahead):0– doi:10.4067/S0718-95162013005000072.
  • Saha, S., and A. Roy. 2020. Whole grain rice fortification as a solution to micronutrient deficiency: Technologies and need for more viable alternatives. Food Chemistry 326:127049. doi:10.1016/j.foodchem.2020.127049.
  • Saltzman, A., E. Birol, A. Oparinde, M. S. Andersson, D. Asare-Marfo, M. T. Diressie, C. Gonzalez, K. Lividini, M. Moursi, and M. Zeller. 2017. Availability, production, and consumption of crops biofortified by plant breeding: Current evidence and future potential. Annals of the New York Academy of Sciences 1390 (1):104–14. doi:10.1111/nyas.13314.
  • Sarma, P. K., M. Hazarika, D. Sarma, P. Saikia, P. Neog, R. Rajbongshi, N. Kakati, M. Bhattacharjee, and C. S. Rao. 2015. Effect of Foliar Application of Potassium on Yield, Drought Tolerance and Rain Water Use Efficiency of Toria under Rainfed Upland Situation of Assam. Indian Journal of Dryland Agricultural Research and Development 30 (1):55–9. doi:10.5958/2231-6701.2015.00008.1.
  • Sarret, G., J. Vangronsveld, A. Manceau, M. Musso, J. D'Haen, J. J. Menthonnex, and J. L. Hazemann. 2001. Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA. Environmental Science & Technology 35 (13):2854–9. doi:10.1021/es000219d.
  • Sarret, G., P. Saumitou-Laprade, V. Bert, O. Proux, J. L. Hazemann, A. Traverse, M. A. Marcus, and A. Manceau. 2002. Forms of Zinc Accumulated in the Hyperaccumulator Arabidopsis halleri. Plant Physiology 130 (4):1815–26. doi:10.1104/pp.007799.
  • Sattar, A., X. Wang, S. Ul-Allah, A. Sher, M. Ijaz, M. Irfan, T. Abbas, S. Hussain, F. Nawaz, A. Al-Hashimi, et al. 2022. Foliar application of zinc improves morpho-physiological and antioxidant defense mechanisms, and agronomic grain biofortification of wheat (Triticum aestivum L.) under water stress. Saudi Journal of Biological Sciences 29 (3):1699–706. doi:10.1016/j.sjbs.2021.10.061.
  • Shahriaripour, R., A. Tajabadipour, I. Esfandiarpoor, and V. Mozafary. 2019. Comparison of EDTA and ammonium Bicarbonate-DTPA for the extraction of phosphorus in calcareous soils from Kerman, Iran. Journal of Plant Nutrition 42 (11-12):1277–82. doi:10.1080/01904167.2019.1609508.
  • Shivashankar, K., and A. Singh. 2022. Effect of foliar potassium application and irrigation scheduling on growth, yield, nutrient uptake and nutrient use efficiency of Summer mungbean. The Pharma Innovation Journal 11 (12):6156–61.
  • Sida-Arreola, J. P., E. Sánchez, D. L. Ojeda-Barrios, G. D. Ávila-Quezada, M. A. Flores-Córdova, C. Márquez-Quiroz, and P. Preciado-Rangel. 2017. Can biofortification of zinc improve the antioxidant capacity and nutritional quality of beans? Emirates Journal of Food and Agriculture 29 (3):237–41. doi:10.9755/ejfa.2016-04-367.
  • Silva, F. C. 2009. Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF: Embrapa Informação Tecnológica.
  • Si-Ping, L., Z. Lu-Sheng, and S. Zhong-Liang. 2022. Wheat growth, photosynthesis and physiological characteristics under different soil Zn levels. Journal of Integrative Agriculture 21 (7):1927–40. doi:10.1016/S2095-3119(21)63643-2.
  • Sorathiya, K. K., M. Choubey, V. R. Patel, S. G. Vahora, and M. D. Jadhav. 2022. Counteracting the phytic acid through phytase supplementation in broiler production: A review. Asian Journal of Research in Biosciences 4 (2):197–202.
  • Sow, S., and S. Ranjan. 2021. A Review on agronomic biofortification for improving food and nutritional security. Research Biotica 3 (2):139–44. doi:10.54083/ResBio/3.2.2021.139-144.
  • Stevens, G. A., T. Beal, M. N. N. Mbuya, H. Luo, and L. M. Neufeld, 2022. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: A pooled analysis of individual-level data from population-representative surveys. The Lancet. Global Health 10 (11):e1590–e1599. doi:10.1016/S2214-109X(22)00367-9.
  • Sun, H., Y. Song, W. Liu, M. Zhang, T. Duan, and Y. Cai. 2023. Coupling soil washing with chelator and cathodic reduction treatment for a multi-metal contaminated soil: Effect of pH controlling. Electrochimica Acta 448:142178. doi:10.1016/j.electacta.2023.142178.
  • Szerement, J., A. Szatanik-Kloc, J Mokrzycki, and Mierzwa‑Hersztek, M. 2022. Agronomic Biofortifcation with Se, Zn, and Fe: An efective strategy to enhance crop nutritional quality and stress defense—A review. Journal of Soil Science and Plant Nutrition 22 (1):1129–59. doi:10.1007/s42729-021-00719-2.
  • Tandy, S., R. Schulin, and B. Nowack. 2006. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62 (9):1454–63. doi:10.1016/j.chemosphere.2005.06.005.
  • Tanton, T. W., and S. H. Crowdy. 1971. The distribution of lead chelate in the transpiration stream of higher plants. Pesticide Science 2 (5):211–3. doi:10.1002/ps.2780020507.
  • Teixeira, I. R., A. Borém, A. G. Silva, and H. Kikuti. 2008. Sources and doses of zinc in common bean cultivated in different sowing seasons. Acta Scientiarum. Agronomy 30 (2):255–9. doi:10.4025/actasciagron.v30i2.1739.
  • Tran, B. T. T., T. R. Cavagnaro, and S. J. Watts-Williams. 2019. Arbuscular mycorrhizal fungal inoculation and soil zinc fertilisation affect the productivity and the bioavailability of zinc and iron in durum wheat. Mycorrhiza 29 (5):445–57. doi:10.1007/s00572-019-00911-4.
  • Umar, S., S. K. Bansal, P. Imas, and H. Magen. 1999. Effect of foliar fertilization of potassium on yield, quality, and nutrient uptake of groundnut. Journal of Plant Nutrition 22 (11):1785–95. doi:10.1080/01904169909365754.
  • United Nations, Department of Economic and Social Affairs, Population Division. 2019. World Population Prospects Highlights (ST/ESA/SER.A/423). Available via DIALOG. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf. Accessed July 15, 2021.
  • Upadhyaya, H., H. Roy, S. Shome, S. Tewari, M. K. Bhattacharya, and S. K. Panda. 2017. Physiological impact of Zinc nanoparticle on germination of rice (Oryza sativa L) seed. Journal of Plant Science and Phytopathology 1 (2):062–70. doi:10.29328/journal.jpsp.1001008.
  • Vassil, A. D., Y. Kapulnik, K. Raskin, and D. E. Salt. 1998. The Role of EDTA in lead transport and accumulation by Indian Mustard. Plant Physiology 117 (2):447–53. doi:10.1104/pp.117.2.447.
  • Wang, Z., H. Wang, C. Xu, G. Lv, Z. Luo, H. Zhu, S. Wang, Q. Zhu, D. Huang, and B. Li. 2020. Foliar Application of Zn-EDTA at early filling stage to increase grain Zn and Fe, and reduce grain Cd, Pb and grain yield in rice (Oryza sativa L.). Bulletin of Environmental Contamination and Toxicology 105 (3):428–32. https://doi.org/https://doi: doi:10.1007/s00128-020-02949-z.
  • Wani, S. H., K. Gaikwad, A. Razzaq, K. Samantara, M. Kumar, and V. Govindan. 2022. Improving zinc and iron biofortifcation in wheat through genomics approaches. Molecular Biology Reports 49 (8):8007–23. doi:10.1007/s11033-022-07326-z.
  • Welch, R. M., R. D. Graham, and I. Cakmak. 2013. Linking agricultural production practices to improving human nutrition and health. Available online: www.fao.org/contact-us/licence-request.pdf (accessed Mar 20 2020).
  • Wessells, K. R., and K. H. Brown. 2012. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One.7 (11):e50568. doi:10.1371/journal.pone.0050568.
  • Xu, M., L. Du, M. Liu, J. Zhou, W. Pan, H. Fu, X. Zhang, Q. Ma, and L. Wu. 2022a. Glycine-chelated zinc rather than glycine-mixed zinc has lower foliar phytotoxicity than zinc sulfate and enhances zinc biofortification in waxy corn. Food Chemistry 370:131031. doi:10.1016/j.foodchem.2021.131031.
  • Xu, M., M. Liu, F. Liu, N. Zheng, S. Tang, J. Zhou, Q. Ma, and L. Wu. 2021. A safe, high fertilizer-efficiency and economical approach based on a low-volume spraying UAV loaded with chelated-zinc fertilizer to produce zinc-biofortified rice grains. Journal of Cleaner Production 323:129188. doi:10.1016/j.jclepro.2021.129188.
  • Xu, M., M. Liu, Q. Ma, and L. Wu. 2022b. Glycine-chelated zinc lowered foliar phytotoxicity than excess zinc sulfate and improved zinc use efficiency in two sweet potato cultivars. Scientia Horticulturae 295:110880. doi:10.1016/j.scienta.2022.110880.
  • Xu, Q., W. Chu, H. Qiu, Y. Fu, S. Cai, and S. Sha. 2013. Responses of Hydrilla verticillata (L.f.) Royle to zinc: In situ localization, subcellular distribution and physiological and ultrastructural modifications. Plant Physiology and Biochemistry : PPB 69:43–8. doi:10.1016/j.plaphy.2013.04.018.
  • Yousefi, Z., P. Sharifi, and M. Rabiee. 2023. Effect of foliar application of zinc and iron on seed yield and yield components of common bean (Phaseolus vulgaris). AGRIVITA Journal of Agricultural Science 45 (1):154–62. doi:10.17503/agrivita.v45i1.2747.
  • Zaman, Q. u., Z. Aslam, M. Yaseen, M. Z. Ihsan, A. Khaliq, S. Fahad, S. Bashir, P. M. A. Ramzani, and M. Naeem. 2018. Zinc biofortification in rice: Leveraging agriculture to moderate hidden hunger in developing countries. Archives of Agronomy and Soil Science 64 (2):147–61. doi:10.1080/03650340.2017.1338343.
  • Zhao, A. Q., X. H. Tian, Y. X. Cao, X. C. Lu, and T. Liu. 2014. Comparison of soil and foliar zinc application for enhancing grain zinc content of wheat when grown on potentially zinc-deficient calcareous soils. Journal of the Science of Food and Agriculture 94 (10):2016–22. doi:10.1002/jsfa.6518.
  • Zou, C. Q., Y. Q. Zhang, A. Rashid, H. Ram, E. Savasli, R. Z. Arisoy, I. Ortiz-Monasterio, S. Simunji, Z. H. Wang, V. Sohu, et al. 2012. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil 361 (1-2):119–30. doi:10.1007/s11104-012-1369-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.