96
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Silicon supplementation improves yield and silicon uptake in maize at eastern Ganges delta coastal soils

ORCID Icon, , , , , & show all
Pages 190-204 | Received 26 Jan 2023, Accepted 11 Oct 2023, Published online: 02 Nov 2023

References

  • Agostinho, F., B. Tubana, M. Martins, and L. Datnoff. 2017. Effect of different silicon sources on yield and silicon uptake of rice grown under varying phosphorus rates. Plants (Basel, Switzerland) 6 (3):35. doi: 10.3390/plants6030035.
  • Akter, N., M. A. Haque, and M. F. Hoque. 2022. Improvement of growth of maize by application of silicon through its suppressing effect on sodium uptake under salt stress condition. Journal of Bangladesh Academy of Sciences 45 (2):251–3. doi: 10.3329/jbas.v45i2.57213.
  • Alayafi, A. H., S. G. M. Al-Solaimani, M. H. Abd El-Wahed, F. M. Alghabari, and A. E. Sabagh. 2022. Silicon supplementation enhances productivity, water use efficiency and salinity tolerance in maize. Frontiers in Plant Science 13:953451. doi: 10.3389/fpls.2022.953451.
  • Amin, M., R. Ahmad, A. Ali, I. Hussain, R. Mahmood, M. Aslam, and D. J. Lee. 2018. Influence of silicon fertilization on maize performance under limited water supply. Silicon 10 (2):177–83. doi: 10.1007/s12633-015-9372-x.
  • Amin, M., R. Ahmad, A. Ali, M. Aslam, and D. J. Lee. 2016. Silicon fertilization improves the maize (Zea mays L.) performance under limited moisture supply. Cereal Research Communications 44 (1):172–85. doi: 10.1556/0806.43.2015.035.
  • An, T., Y. Gao, Q. Kuang, Y. Wu, Q. U. Zaman, Y. Zhang, B. Xu, and Y. Chen. 2022. Effect of silicon on morpho-physiological attributes, yield and cadmium accumulation in two maize genotypes with contrasting root system size and health risk assessment. Plant and Soil 477 (1-2):117–34. doi: 10.1007/s11104-022-05384-7.
  • Askari-Khorasgani, O., M. I. A. Rehmani, S. H. Wani, and A. Kumar. 2021. Osmotic stress: An outcome of drought and salinity. In Handbook of plant and crop physiology, 445–56. Baca Raton, FL: CRC Press.
  • Atta, M. M. M., R. M. Abd-El-Salam, H. M. Abdel-Lattif, and M. A. Garang. 2022. Effect of silicon on maize under water deficit conditions at flowering stage. SABRAO Journal of Breeding and Genetics 54 (4):948–62. doi: 10.54910/sabrao2022.54.4.25.
  • Aziz, A., M. A. Tahir, N. Sabah, G. Sarwar, and S. Muhammad. 2020. Effect of rice and wheat straw and K-silicate application on maize growth. Pakistan Journal of Agricultural Research 33 (4):905–10. doi: 10.17582/journal.pjar/2020/33.4.905.910.
  • Campos, C. N. S., R. de Mello Prado, C. G. Roque, A. J. de Lima Neto, L. J. P. Marques, A. P. Chaves, and C. A. Cruz. 2015. Use of silicon in mitigating ammonium toxicity in maize plants. American Journal of Plant Sciences 06 (11):1780–4. doi: 10.4236/ajps.2015.611178.
  • Coskun, D., R. Deshmukh, H. Sonah, J. G. Menzies, O. Reynolds, J. F. Ma, H. J. Kronzucker, and R. R. Bélanger. 2019. The controversies of silicon’s role in plant biology. The New Phytologist 221 (1):67–85. doi: 10.1111/nph.15343.
  • Cuong, T. X., H. Ullah, A. Datta, and T. C. Hanh. 2017. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Science 24 (5):283–90. doi: 10.1016/j.rsci.2017.06.002.
  • Delavar, K., F. Ghanati, H. Zare-Maivan, and M. Behmanesh. 2019. Effects of silicon nutrition on the physiological parameters of maize. Journal of Plant Process and Function 7:45–58. http://jispp.iut.ac.ir/article-1-671-en.html.
  • Dhiman, P., N. Rajora, S. Bhardwaj, S. S. Sudhakaran, A. Kumar, G. Raturi, K. Chakraborty, O. P. Gupta, B. N. Devanna, D. K. Tripathi, et al. 2021. Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiology and Biochemistry: PPB 162:110–23. doi: 10.1016/j.plaphy.2021.02.023.
  • Dobermann, A. 2005. Nitrogen use efficiency– state of the art. IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt, Germany, 28–30 June 2005, 1–18. University of Nebraska-Lincoln.
  • FAO. 2017. Crop statistics. In Food and Agriculture Organization irrigation and drainage paper 30, Rome Italy: FAOSTAT.
  • Fiala, R., I. Fialová, M. Vaculík, and M. Luxová. 2021. Effect of silicon on the young maize plants exposed to nickel stress. Plant Physiology and Biochemistry: PPB 166:645–56. doi: 10.1016/j.plaphy.2021.06.026.
  • González, L. C., R. M. Prado, and C. N. S. Campos. 2021. Silicon, potassium and nitrogen accumulation and biomass in corn under hydroponic conditions. In Maize genetic resources, ed. M. A. El-Esawi. Egypt: IntechOpen. doi: 10.5772/intechopen.100628.
  • Greger, M., T. Landberg, and M. Vaculík. 2018. Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants (Basel, Switzerland) 7 (2):41. doi: 10.3390/plants7020041.
  • Hajong, P., M. H. Rahman, M. S. Rahman, K. U. Ahammad, and M. I. Islam. 2021. Study on scope and existing cropping pattern at south-western saline region of Bangladesh. Journal of Bioscience and Agriculture Research 27 (02):2278–86. doi: 10.18801/jbar.270221.277.
  • Haque, M. A., M. E. Kabir, S. Akhter, M. F. Hoque, B. C. Sarker, M. F. A. Anik, A. Ahmed, S. Pranto, A. S. Sima, F. Lima, et al. 2023. Crop nutrient limitations in intensified cropping sequences on the Ganges delta coastal floodplains. Journal of Soil Science and Plant Nutrition 23 (2):1996–2006. doi: 10.1007/s42729-023-01154-1.
  • Haque, M. A., M. Jahiruddin, M. F. Hoque, M. S. Islam, M. B. Hossain, M. A. Satter, M. E. Haque, and R. W. Bell. 2023. Increasing the use efficiency of fertilizer phosphorus for maize in low-P Ganges delta soils. Journal of Plant Nutrition 46 (10):2257–75. 10.1080/01904167.2022.2155544.
  • Khan, M. I. R., F. Ashfaque, H. Chhillar, M. Irfan, and N. A. Khan. 2021. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. Plant Physiology and Biochemistry: PPB 162:36–47. doi: 10.1016/j.plaphy.2021.02.024.
  • Klotzbücher, T., C. Treptow, K. Kaiser, A. Klotzbücher, and R. Mikutta. 2020. Sorption competition with natural organic matter as mechanism controlling silicon mobility in soil. Scientific Reports 10 (1):11225. doi: 10.1038/s41598-020-68042-x.
  • Kovács, S., E. Kutasy, and J. Csajbók. 2022. The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants (Basel, Switzerland) 11 (9):1223. doi: 10.3390/plants11091223.
  • Latef, A. A., and L. S. Tran. 2016. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Frontiers in Plant Science 7:243. doi: 10.3389/fpls.2016.00243.
  • Liao, M., Z. Fang, Y. Liang, X. Huang, X. Yang, S. Chen, X. Xie, C. Xu, and J. Guo. 2020. Effects of supplying silicon nutrient on utilization rate of nitrogen and phosphorus nutrients by rice and its soil ecological mechanism in a hybrid rice double-cropping system. Journal of Zhejiang University. Science. B 21 (6):474–84. doi: 10.1631/jzus.B1900516.
  • Linden, C. V., Z. Li, A. Iserentant, E. V. Ranst, F. Tombeur, and B. Delvaux. 2021. Rainfall is the major driver of plant Si availability in perudic gibbsitic Andosols. Geoderma 404:115295. doi: 10.1016/j.geoderma.2021.115295.
  • Linden, C. V., and B. Delvaux. 2019. The weathering stage of tropical soils affects the soil-plant cycle of silicon, but depending on land use. Geoderma 351:209–20. doi: 10.1016/j.geoderma.2019.05.033.
  • Ma, J. F., and N. Yamaji. 2006. Silicon uptake and accumulation in higher plants. Trends in Plant Science 11 (8):392–7. doi: 10.1016/j.tplants.2006.06.007.
  • Mabagala, F. S., Y. Geng, G. Cao, L. Wang, W. Meng, and Z. Meiling. 2021. Effect of silicon fertilizer and straw return on the maize yield and phosphorus efficiency in northeast China. Communications in Soil Science and Plant Analysis 52 (2):116–27. doi: 10.1080/00103624.2020.1854284.
  • Malcovska, S. M., Z. Ducaiova, and M. Backor. 2014. Impact of silicon on maize seedlings exposed to short-term UV-b irradiation. Biologia 69:1349–55. doi: 10.2478/s11756-014-0432-2.
  • Malik, M. A., A. H. Wani, S. H. Mir, I. U. Rehman, I. Tahir, P. Ahmad, and I. Rashid. 2021. Elucidating the role of silicon in drought stress tolerance in plants. Plant Physiology and Biochemistry: PPB 165:187–95. doi: 10.1016/j.plaphy.2021.04.021.
  • Mišúthová, A., L. Slováková, K. Kollárová, and M. Vaculík. 2021. Effect of silicon on root growth, ionomics and antioxidant performance of maize roots exposed to As toxicity. Plant Physiology and Biochemistry: PPB 168:155–66. doi: 10.1016/j.plaphy.2021.10.012.
  • Owino-Gerroh, C., and G. J. Gascho. 2005. Effect of silicon on low pH soil phosphorus sorption and on uptake and growth of maize. Communications in Soil Science and Plant Analysis 35 (15-16):2369–78. doi: 10.1081/LCSS-200030686.
  • Page, A. L., R. H. Miller, and D. R. Keeney. 1982. Methods of soil analysis. Madison, Wisconsin: American Society of Agronomy, Inc. and Soil Science Society of America, Inc.
  • Pati, S., B. Pal, S. Badole, G. C. Hazra, and B. Mandal. 2016. Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Communications in Soil Science and Plant Analysis 47 (3):284–90. doi: 10.1080/00103624.2015.1122797.
  • Rea, R. S., M. R. Islam, M. M. Rahman, B. Nath, and K. Mix. 2022. Growth, nutrient accumulation, and drought tolerance in crop plants with silicon application: A Review. Sustainability 14 (8):4525. doi: 10.3390/su14084525.
  • Savant, N. K., L. Datnoff, and G. Snyder. 1997. Depletion of plant-available silicon in soils: A possible cause of declining rice yields. Communications in Soil Science and Plant Analysis 28 (13-14):1245–52. doi: 10.1080/00103629709369870.
  • Shi, Y., Y. Zhang, H. J. Yao, J. W. Wu, H. Sun, and H. J. Gong. 2014. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiology and Biochemistry: PPB 78:27–36. doi: 10.1016/j.plaphy.2014.02.009.
  • Silva, A. J., C. W. Nascimento, A. S. Gouveia-Neto, and E. A. S. Junior. 2015. Effects of silicon on alleviating arsenic toxicity in maize plants. Revista Brasileira de Ciência do Solo 39 (1):289–96. doi: 10.1590/01000683rbcs20150176.
  • Sultana, N., M. A. Haque, M. F. Hoque, M. B. Hossain, M. A. Satter, and M. Jahiruddin. 2021. Effect of silicon application on growth and biomass yield of rice under salinity stress. Journal of Bangladesh Agricultural University 19 (0):1. doi: 10.5455/JBAU.117294.
  • Sume, M. A., M. A. Haque, A. Mobaswera, M. F. Hoque, M. Jahiruddin, and R. W. Bell. 2023. Identifying varietal differences for silicon mediated improvement of leaf architecture and plant growth in rice. Silicon 15 (14):6299–311. doi: 10.1007/s12633-023-02514-3.
  • Teixeira, G. C. M., R. de Mello Prado, L. T. de Oliveira, J. V. de Castro Souza, and A. M. S. Rocha. 2022. Silicon fertigation with appropriate source reduces water requirement of maize under water deficit. Plant and Soil 477 (1-2):83–97. doi: 10.1007/s11104-022-05446-w.
  • Xie, Z., F. Song, H. Xu, H. Shao, and R. Song. 2014. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. TheScientificWorldJournal 2014:718716, 6–pages doi: 10.1155/2014/718716.
  • Xu, H., Y. Lu, and Z. Xie. 2016. Effects of silicon on maize photosynthesis and grain yield in black soils. Emirates Journal of Food and Agriculture 28 (11):779–85. doi: 10.9755/ejfa.2016-06-730.
  • Xu, J., L. Guo, and L. Liu. 2022. Exogenous silicon alleviates drought stress in maize by improving growth, photosynthetic and antioxidant metabolism. Environmental and Experimental Botany 201:104974. doi: 10.1016/j.envexpbot.2022.104974.
  • Yasir, T. A., A. Khan, M. Skalicky, A. Wasaya, M. I. A. Rehmani, N. Sarwar, K. Mubeen, M. Aziz, M. M. Hassan, F. A. S. Hassan, et al. 2021. Exogenous sodium nitroprusside mitigates salt stress in lentil (Lens culinaris medic.) by affecting the growth, yield, and biochemical properties. Molecules 26 (9):2576. doi: 10.3393/molecules26092576.
  • Yoshida, S., D. A. Forno, J. H. Cock, and K. A. Gomez. 1976. Laboratory manual for physiological studies of rice, 3rd ed., 17–22. Philippines: International Rice Research Institute.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.