972
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Chelated- and nano iron fertilization affects nutrient uptake and translocation in fresh market tomatoes

, , &
Pages 1152-1174 | Received 07 Jul 2023, Accepted 03 Jan 2024, Published online: 18 Jan 2024

References

  • Ali, M. Y., A. A. I. Sina, S. S. Khandker, L. Neesa, E. M. Tanvir, A. Kabir, M. I. Khalil, and S. H. Gan. 2020. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods (Basel, Switzerland) 10 (1):45. doi:10.3390/FOODS10010045.
  • Aqeel, U., T. Aftab, M. M. A. Khan, M. Naeem, and M. N. Khan. 2022. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere 291 (Pt 1):132672. doi:10.1016/J.CHEMOSPHERE.2021.132672.
  • Bárzana, G., P. Garcia-Gomez, and M. Carvajal. 2022. Nanomaterials in plant systems: Smart advances related to water uptake and transport involving aquaporins. Plant Nano Biology 1:100005. doi:10.1016/j.plana.2022.100005.
  • Bindraban, P. S., C. Dimkpa, L. Nagarajan, A. Roy, and R. Rabbinge. 2015. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biology and Fertility of Soils 51 (8):897–911. doi:10.1007/S00374-015-1039-7/TABLES/1.
  • Cobb, G. P., K. Sands, M. Waters, B. G. Wixson, and E. Dorward-King. 2000. Accumulation of heavy metals by vegetables grown in mine wastes. Environmental Toxicology and Chemistry 19 (3):600–7. doi:10.1002/etc.5620190311.
  • Cullen, L. G., E. L. Tilston, G. R. Mitchell, C. Collins, and L. J. Shaw. 2011. Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: Particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere 82 (11):1675–82. doi:10.1016/j.chemosphere.2010.11.009.
  • Eid, E. M., S. A. Alrumman, E. A. Farahat, and A. F. El-Bebany. 2018. Prediction models for evaluating the uptake of heavy metals by cucumbers (Cucumis sativus L.) grown in agricultural soils amended with sewage sludge. Environmental Monitoring and Assessment 190 (9):501. doi:10.1007/S10661-018-6885-Y/TABLES/5.
  • El-Desouky, H. S., K. R. Islam, B. Bergefurd, G. Gao, T. Harker, H. Abd-El-Dayem, F. Ismail, M. Mady, and R. M. Y. Zewail. 2021. Nano iron fertilization significantly increases tomato yield by increasing plants’ vegetable growth and photosynthetic efficiency. Journal of Plant Nutrition 44 (11):1–15. doi:10.1080/01904167.2021.1871749.
  • Elgala, A. M., and R. H. Maier. 1971. Effect of ethylenediamine di (o-hydroxyphenylacetic acid) application to soil columns on the distribution of certain nutrient elements in the water-soluble, acid-soluble and exchangeable forms. Plant and Soil 34 (1):607–17. doi:10.1007/BF01372816.
  • FAOSTAT. 2019. Food and Agriculture Organization of the United Nations. http://fao.org/faostat/en.
  • Guil-Guerrero, J. L., and M. M. Rebolloso-Fuentes. 2009. Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. Journal of Food Composition and Analysis 22 (2):123–9. doi:10.1016/j.jfca.2008.10.012.
  • Hansen, N. C., Hopkins, B. G., Ellsworth, J. W., and Jolley, V. D. 2006. Iron nutrition in field crops. In: Iron Nutrition in Plants and Rhizospheric Microorganisms, edited by Barton, L. L. & Abadia, B. J., 23–59. doi:10.1007/1-4020-4743-6.
  • He, S., Y. Feng, H. Ren, Y. Zhang, N. Gu, and X. Lin. 2011. The impact of iron oxide magnetic nanoparticles on the soil bacterial community. Journal of Soils and Sediments 11 (8):1408–17. doi:10.1007/s11368-011-0415-7.
  • Hossain, K. G., N. Islam, F. Ghavami, C. Durant, C. Durant, and M. Johnson. 2017. Effect of increased amounts of Fe, Zn, and Cd on uptake, translocation, and accumulation of human health related micronutrients in wheat. Asian Journal of Agriculture and Food Science 5 (1):19–29.
  • Institute of Medicine. 1997. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press. doi:10.17226/5776.
  • Kah, M., R. S. Kookana, A. Gogos, and T. D. Bucheli. 2018. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology 13 (8):677–84. doi:10.1038/s41565-018-0131-1.
  • Karagiannidis, N., T. Thomidis, G. Zakinthinos, and C. Tsipouridis. 2008. Prognosis and correction of iron chlorosis in peach trees and relationship between iron concentration and Brown Rot. Scientia Horticulturae 118 (3):212–7. doi:10.1016/j.scienta.2008.06.005.
  • Klem-Marciniak, E., M. Huculak-Mączka, K. Marecka, K. Hoffmann, and J. Hoffmann. 2021. Chemical stability of the fertilizer chelates Fe-EDDHA and Fe-EDDHSA over time. Molecules (Basel, Switzerland) 26 (7):1933. doi:10.3390/MOLECULES26071933.
  • Klute, A. 1986. Water Retention: Laboratory Methods, Part 1: Physical and Mineralogical Methods. In: Methods of Soil Analysis, edited by Klute, A., 635–662. No. 9, Madison, WI. USA: American Society of Agronomy, Inc./Soil Science Society of America, Inc. Publisher.
  • Krzesłowska, M. 2010. The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum 33 (1):35–51. doi:10.1007/s11738-010-0581-z.
  • Küpper, H., and B. Leitenmaier. 2013. Cadmium-accumulating plants. Metal Ions in Life Sciences 11:373–93. doi:10.1007/978-94-007-5179-8_12/FIGURES/1.
  • Litskas, V. D., A. Migeon, M. Navajas, M. S. Tixier, and M. C. Stavrinides. 2019. Impacts of climate change on tomato, a notorious pest and its natural enemy: Small scale agriculture at higher risk. Environmental Research Letters 14 (8):084041. doi:10.1088/1748-9326/ab3313.
  • López-Millán, A. F., F. Morales, Y. Gogorcena, A. Abadía, and J. Abadía. 2009. Metabolic responses in iron deficient tomato plants. Journal of Plant Physiology 166 (4):375–84. doi:10.1016/J.JPLPH.2008.06.011.
  • López-Rayo, S., P. Nadal, and J. J. Lucena. 2016. Novel chelating agents for iron, manganese, zinc, and copper mixed fertilisation in high pH soil-less cultures. Journal of the Science of Food and Agriculture 96 (4):1111–20. doi:10.1002/JSFA.7183.
  • Mclaughlin, M. J., Smolders, E., and Degryse, F., Rietra, R. 2011. Uptake of Metals from Soil into Vegetables. In: Dealing with Contaminated Sites: From Theory towards Practical Application, edited by F. Swartjes, 325–367. Dordrecht: Springer. doi:10.1007/978-90-481-9757-6_8.
  • Mimmo, T., D. Del Buono, R. Terzano, N. Tomasi, G. Vigani, C. Crecchio, R. Pinton, G. Zocchi, and S. Cesco. 2014. Rhizospheric organic compounds in the soil–microorganism–plant system: Their role in iron availability. European Journal of Soil Science 65 (5):629–42. doi:10.1111/ejss.12158.
  • Montgomery, D. R., A. Biklé, R. Archuleta, P. Brown, and J. Jordan. 2022. Soil health and nutrient density: Preliminary comparison of regenerative and conventional farming. PeerJ. 10:e12848. doi:10.7717/PEERJ.12848.
  • Morgan, J. B., and E. L. Connolly. 2013. Plant-soil interactions: Nutrient uptake. Nature Education Knowledge 4 (8):2.
  • Nadal, P., C. García-Delgado, D. Hernández, S. López-Rayo, and J. J. Lucena. 2012. Evaluation of Fe-N,N′-Bis(2-hydroxybenzyl)ethylenediamine-N,N′-diacetate (HBED/Fe 3+) as Fe carrier for soybean (Glycine max) plants grown in calcareous soil. Plant and Soil 360 (1–2):349–62. doi:10.1007/s11104-012-1246-z.
  • Ottow, J. C. G., G. Benckiser, I. Watanabe, and S. Santiago. 1983. Multiple nutritional soil stress as the prerequisite for iron toxicity of wetland rice (Oryza sativa L.). Tropical Agriculture 60 (2): 102–106. https://journals.sta.uwi.edu/ojs/index.php/ta/article/view/2386
  • Page, V., and U. Feller. 2005. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Annals of Botany 96 (3):425–34. doi:10.1093/AOB/MCI189.
  • Page, V., and U. Feller. 2015. Heavy metals in crop plants: Transport and redistribution processes on the whole plant level. Agronomy 5 (3):447–63. doi:10.3390/agronomy5030447.
  • Page, V., L. Weisskopf, and U. Feller. 2006. Heavy metals in white lupin: Uptake, root-to-shoot transfer and redistribution within the plant. The New Phytologist 171 (2):329–41. doi:10.1111/J.1469-8137.2006.01756.X.
  • Pinto, F. A., E. D. de Souza, H. B. Paulino, N. Curi, and M. A. C. Carneiro. 2013. Sorção e dessorção de fósforo em solos do cerrado Brasileiro como suporte para recomendação da adubação fosfatada. Ciência e Agrotecnologia 37 (6):521–30. doi:10.1590/S1413-70542013000600005.
  • Rai, P. K., S. S. Lee, M. Zhang, Y. F. Tsang, and K. H. Kim. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International 125:365–85. doi:10.1016/J.ENVINT.2019.01.067.
  • Rout, G. R., and S. Sahoo. 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science 3:1–24. doi:10.7831/ras.3.1.
  • Salehi, B., R. Sharifi-Rad, F. Sharopov, J. Namiesnik, A. Roointan, M. Kamle, P. Kumar, N. Martins, and J. Sharifi-Rad. 2019. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition (Burbank, Los Angeles County, CA) 62:201–8. doi:10.1016/J.NUT.2019.01.012.
  • Samaranayake, P., B. Peiris, and S. Dssanayake. 2012. Effect of excessive ferrous (Fe2+) on growth and iron content in rice (Oryza sativa). International Journal of Agriculture and Biology 14: 296-298. http://www.fspublishers.org
  • Schlegel, T. K., J. Schönherr, and L. Schreiber. 2006. Rates of foliar penetration of chelated Fe(III): Role of light, stomata, species, and leaf age. Journal of Agricultural and Food Chemistry 54 (18):6809–13. doi:10.1021/JF061149I/ASSET/IMAGES/LARGE/JF061149IF00007.JPEG.
  • Sharma, R. K., M. Agrawal, and F. M. Marshall. 2009. Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 47 (3):583–91. doi:10.1016/J.FCT.2008.12.016.
  • Sheykhbaglou, R., M. Sedghi, and B. Fathi-Achachlouie. 2018. The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed. Anais da Academia Brasileira de Ciencias 90 (1):485–94. doi:10.1590/0001-3765201820160251.
  • Singh, S., R. Saxena, K. Pandey, K. Bhatt, and S. Sinha. 2004. Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: Its metal accumulation potential. Chemosphere 57 (11):1663–73. doi:10.1016/J.CHEMOSPHERE.2004.07.049.
  • Sulaiman, F. R., and H. A. Hamzah. 2018. Heavy metals accumulation in suburban roadside plants of a tropical area (Jengka, Malaysia). Ecological Processes 7 (1):1–11. doi:10.1186/S13717-018-0139-3/FIGURES/4.
  • Trumbo, P., A. A. Yates, S. Schlicker, and M. Poos. 2001. Dietary reference intakes. Journal of the American Dietetic Association 101 (3):294–301. https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=00028223&v=2.1&it=r&id=GALE%7CA72764304&sid=googleScholar&linkaccess=fulltext. doi:10.1016/S0002-8223(01)00078-5.
  • Yates, A. A., S. A. Schlicker, and C. W. Suitor. 1998. Dietary reference intakes: The new basis for recommendations for calcium and related nutrients, B vitamins, and choline. Journal of the American Dietetic Association 98 (6):699–706. doi:10.1016/S0002-8223(98)00160-6.
  • Ye, L., L. Li, L. Wang, S. Wang, S. Li, J. Du, S. Zhang, and H. Shou. 2015. MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis. Frontiers in Plant Science 6 (NOVEMBER):953. doi:10.3389/FPLS.2015.00953/BIBTEX.
  • Zargar, S. M., G. K. Agrawal, R. Rakwal, and Y. Fukao. 2015. Quantitative proteomics reveals role of sugar in decreasing photosynthetic activity due to Fe deficiency. Frontiers in Plant Science 6 (AUG):592. doi:10.3389/FPLS.2015.00592/FULL.
  • Zia-Ur-Rehman, M., M. F. B. Mfarrej, M. Usman, S. Anayatullah, M. Rizwan, H. F. Alharby, I. M. Abu Zeid, N. M. Alabdallah, and S. Ali. 2023. Effect of iron nanoparticles and conventional sources of Fe on growth, physiology and nutrient accumulation in wheat plants grown on normal and salt-affected soils. Journal of Hazardous Materials 458:131861. doi:10.1016/J.JHAZMAT.2023.131861.
  • Zuo, Y., and F. Zhang. 2011. Soil and crop management strategies to prevent iron deficiency in crops. Plant and Soil 339 (1–2):83–95. doi:10.1007/s11104-010-0566-0.