86
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Primary and residual impacts of phosphoric acid modified biochar on growth and concentrations of essential and non-essential elements in lettuce and second crop arugula

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2134-2148 | Received 09 Sep 2022, Accepted 10 Mar 2024, Published online: 18 Mar 2024

References

  • An, Y., J. Lu, R. Niu, M. Li, X. Zhao, X. Huang, H. Huang, A. Garg, and A. Zhussupbekov. 2021. Exploring effects of novel chemical modification of biochar on soil water retention and crack suppression: Towards commercialization of production of biochar for soil remediation. Biomass Conversion and Biorefinery 13 (15):13897–910. doi:10.1007/s13399-021-02081-w.
  • Arif, M., M. Ilyas, M. Riaz, K. Ali, K. Shah, I. U. Haq, and S. Fahad. 2017. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field Crops Research 214:25–37. doi:10.1016/j.fcr.2017.08.018.
  • Arifin, N. F. T., N. Yusof, N. A. H. Md Nordin, J. Jaafar, A. F. Ismail, F. Aziz, and W. N. W. Salleh. 2021. Rice husk derived graphene-like material: Activation with phosphoric acid in the absence of inert gas for hydrogen gas storage. International Journal of Hydrogen Energy 46 (60):31084–95. doi:10.1016/j.ijhydene.2021.02.051.
  • Ates, A. 2021. The effect of microwave and ultrasound activation on the characteristics of biochar produced from tea waste in the presence of H3PO4 and KOH. Biomass Conversion Biorefinery 10:9075–94. doi:10.1007/s13399-021-01838-7.
  • Biederman, L. A., and W. S. Harpole. 2013. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy.5 (2):202–14. doi:10.1111/gcbb.12037.
  • Bremner, J. M. 1965. Total Nitrogen. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2, ed. A.G. Norman, 1149–78. Wisconsin: American Society of Agronomy.
  • Cassel, D. K., and D. R. Nielsen. 1986. Field capacity and available water capacity. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5:901–26.
  • Chen, T., L. Luo, S. Deng, G. Shi, S. Zhang, Y. Zhang, O. Deng, L. Wang, J. Zhang, and L. Wei. 2018. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresource Technology 267:431–7. doi:10.1016/j.biortech.2018.07.074.
  • Chen, M.-Y., Y.-C. Tsai, C.-F. Tseng, H.-P. Lin, and H.-C. Hsi. 2019. Using rice-husk-derived porous silica modified with recycled Cu from industrial wastewater and Ce to remove Hg0 and NO from simulated flue gases. Aerosol and Air Quality Research 19 (11):2557–67. doi:10.4209/aaqr.2019.09.0468.
  • Cordell, D., J. Drangert, and S. White. 2009. The story of phosphorus: Global food security and food for thought. Global Environmental Change 19 (2):292–305. doi:10.1016/j.gloenvcha.2008.10.009.
  • Filho, J. F. L., J. S. S. Carneiro, C. F. Barbosa, P. K. de Lima, A. A. Leite, and L. C. A. Melo. 2020. Aging of biochar-based fertilizers in soil: Effects on phosphorus pools and availability to Urochloa brizantha grass. The Science of the Total Environment 709:136028. doi:10.1016/j.scitotenv.2019.136028.
  • Gwenzi, W., T. J. Nyambishi, N. Chaukura, and N. Mapope. 2018. Synthesis and nutrient release patterns of a biochar-based N-P-K slow-release fertilizer. International Journal of Environmental Science and Technology 15 (2):405–14. doi:10.1007/s13762-017-1399-7.
  • Gunes, A., A. Inal, and Y. K. Kadioglu. 2009. Determination of mineral element concentrations in wheat, sunflower, chickpea and lentil cultivars in response to P fertilization by polarized energy dispersive X‐ray fluorescence. X-Ray Spectrometry 38 (5):451–62. doi:10.1002/xrs.1186.
  • Gunes, A., A. Inal, M. B. Taskin, O. Sahin, E. C. Kaya, and A. Atakol. 2014. Effect of phosphorus enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management 30 (2):182–8. doi:10.1111/sum.12114.
  • Hafeez, F., T. Aziz, M. A. Maqsood, M. Ahmed, and M. Farooq. 2010. Differences in rice cultivars for growth and phosphorus acquisition from rock phosphate and mono-ammonium phosphate sources. International Journal of Agriculture and Biology 12:907–10. https://hal.inrae.fr/hal-02660839.
  • Hayat, M. A. 1974. Principles and Techniques of Scanning Electron Microscopy: Biological Applications. Vol. 6. NewYork: Van Nostrand Reinhold Company.
  • Johnson, R. A., and G. K. Bhattacharyya. 2019. Statistics: Principles and methods. New York: John Wiley & Sons.
  • Kim, J. A., K. Vijayaraghavan, D. H. K. Reddy, and Y. Yun. 2018. A phosphorus-enriched biochar fertilizer from bio-fermentation waste: A potential alternative source for phosphorus fertilizers. Journal of Cleaner Production 196:163–71. doi:10.1016/j.jclepro.2018.06.004.
  • Kong, F., X. Ling, B. Iqbal, Z. Zhou, and Y. Meng. 2023. Soil phosphorus availability and cotton growth affected by biochar addition under two phosphorus fertilizer levels. Archives of Agronomy and Soil Science 69 (1):18–31. doi:10.1080/03650340.2021.1955355.
  • Kozhevnikova, A. D., I. V. Seregin, E. I. Bystrova, A. I. Belyaeva, M. N. Kataeva, and V. B. Ivanov. 2009. The effects of lead, nickel, and strontium nitrates on cell division and elongation in maize roots. Russian Journal of Plant Physiology 56 (2):242–50. doi:10.1134/S1021443709020137.
  • Kumar, S., S. Kumar, and T. Mohapatra. 2021. Interaction between macro- and micro-nutrients in plants. Frontiers in Plant Science 12:665583. doi:10.3389/fpls.2021.665583.
  • Lee, H.-S, and H.-S. Shin. 2021. Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods. Journal of Environmental Management 299:113651. doi:10.1016/j.jenvman.2021.113651.
  • Lehmann, J., M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday, and D. Crowley. 2011. Biochar effects on soil biota a review. Soil Biology and Biochemistry 43 (9):1812–36. doi:10.1016/j.soilbio.2011.04.022.
  • Leksungnoen, P., W. Wisawapipat, D. Ketrot, S. Aramrak, S. Nookabkaew, N. Rangkadilok, and J. Satayavivad. 2019. Biochar and ash derived from silicon-rich rice husk decrease inorganic arsenic species in rice grain. The Science of the Total Environment 684:360–70. doi:10.1016/j.scitotenv.2019.05.247.
  • Li, H., Y. Li, Y. Xu, and X. Lu. 2020. Biochar phosphorus fertilizer effects on soil phosphorus availability. Chemosphere 244:125471. doi:https://doi.org/10.1016/j.chemosphere.2019.125471.
  • Liu, L., Y. Li, and S. Fan. 2019. Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution. Processes 7 (12):891. doi:10.3390/pr7120891.
  • Moyen, C., and G. Roblin. 2010. Uptake and translocation of strontium in hydroponically grown maize plants, and subsequent effects on tissue ion content, growth and chlorophyll a/b ratio: Comparison with Ca effects. Environmental and Experimental Botany 68 (3):247–57. doi:10.1016/j.envexpbot.2009.12.004.
  • Mohammad, Y. S., E. M. Shaibu-Imodagbe, S. B. Igboro, A. Giwa, and C. A. Okuofu. 2015. Effect of phosphoric acid modification on characteristics of rice husk activated carbon. Iranica Journal of Energy and Environment 6:20–5. doi:10.5829/idosi.ijee.2015.06.01.05.
  • Muthukrishnan, S., S. Gupta, and H. W. Kua. 2019. Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar. Theoretical and Applied Fracture Mechanics 104:102376. doi:10.1016/j.tafmec.2019.102376.
  • Neto, H. d S. L., M. d A. Guimarães, I. M. G. Sampaio, J. d S. Rabelo, C. d S. Viana, and R. O. Mesquita. 2020. Can silicon (Si) influence growth, phsiology and postharvest quality of lettuce? Australian Journal of Crop Science 14 (14(01) 2020):71–7. doi:10.21475/ajcs.20.14.01.p1848.
  • Novais, S. V., M. D. O. Zenero, M. S. C. Barreto, R. C. Montes, and P. E. C. Cerri. 2018. Phosphorus removal from eutrophic water using modified biochar. The Science of the Total Environment 633:825–35. doi:10.1016/j.scitotenv.2018.03.246.
  • Page, A. L., and D. R. Keeney. 1982. Methods of soil analysis. Part 2, Chemical and microbiological properties. 2nd ed. Wisconsin, USA, Madison: American Society of Agronomy Inc., Soil Science Society of America Inc.
  • Peiris, C., P. D. Wathudura, S. R. Gunatilake, B. Gajanayake, J. J. Wewalwela, S. Abeysundara, and M. Vithanage. 2022. Effect of acid modified tea-waste biochar on crop productivity of red onion (Allium cepa L.). Chemosphere 288 (Pt 2):132551. doi:10.1016/j.chemosphere.132551,2021.132551.
  • Peng, H., P. Gao, G. Chu, B. Pan, J. Peng, and B. Xing. 2017. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environmental Pollution (Barking, Essex: 1987)229:846–53. doi:10.1016/j.envpol.2017.07.004.
  • Penn, C. J., and J. J. Camberato. 2019. A critical review on soil chemical processes that control how soil ph affects phosphorus availability to plants. Agriculture 9 (6):120. doi:10.3390/agriculture9060120.
  • Puziy, A. M., O. I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García, and J. M. D. Tascón. 2002. Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon 40 (9):1493–505. doi:10.1016/S0008-6223(01)00317-7.
  • Rengel, Z., I. Cakmak, and P. J. White. 2022. Marschner’s Mineral Nutrition of Plants. 4th ed. London: Elsewier.
  • Roberts, T. L., and A. E. Johnston. 2015. Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycling 105:275–81. doi:10.1016/j.resconrec.2015.09.013.
  • Qayyum, M. F., G. Haider, M. Iqbal, S. Hameed, N. Ahmad, M. Z. U. Rehman, A. Majeed, M. Rizwan, and S. Ali. 2021. Effect of alkaline and chemically engineered biochar on soil properties and phosphorus bioavailability in maize. Chemosphere 266:128980. doi:10.1016/j.chemosphere.2020.128980.
  • Sahin, O., M. B. Taskin, E. C. Kaya, O. Atakol, E. Emir, A. Inal, and A. Gunes. 2017. Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use and Management 33 (3):447–56. doi:10.1111/sum.12360.
  • Sahin, O., A. Gunes, S. K. Babar, K. Deniz, Y. K. Kadioglu, S. Ozturk, and A. Inal. 2023. Phosphorus-enriched rice husk biochar affected growth and mineral nutrition of wheat and its residual effects on maize production. Journal of Soil Science and Plant Nutrition 23 (3):3085–94. doi:10.1007/s42729-023-01284-6.
  • Sudjana, B., A. Jingga, and T. Simarmata. 2017. Enriched rice husk biochar ameliorant to increase crop productivity on typic hapludults. Global Advanced Research Journal of Agricultural Science 6:23125–31.
  • Taskin, M. B., Y. K. Kadioglu, O. Sahin, A. Inal, and A. Gunes. 2019. Effect of acid modified biochar on the growth and essential and non-essential element content of bean, chickpea, soybean, and maize grown in calcareous soil. Communications in Soil Science and Plant Analysis 50 (13):1604–13. doi:10.1080/00103624.2019.1631326.
  • Taskin, M. B., and A. Gunes. 2022. Iron Biofortification of wheat grains by foliar application of Nano Zero-valent Iron (nZVI) and other iron sources with urea. Journal of Soil Science and Plant Nutrition 22 (4):4642–52. doi:10.1007/s42729-022-00946-1.
  • Taskin, M. B., H. Akca, S. Kan, H. Taskin, K. Deniz, Y. K. Kadioglu, M. Nikolić, I. Cakmak, and A. Gunes. 2023. Silicon-phosphate obtained from rice husk: A sustainable alternative to phosphate fertilizer evaluated for barley and maize in different soils. Journal of Soil Science and Plant Nutrition 23 (3):3186–96. doi:10.1007/s42729-023-01281-9.
  • Taskin, M. B., H. Akca, S. K. Babar, Y. K. Kadioglu, K. Deniz, S. Kan, and A. Gunes. 2023a. Evaluating the comparative effects of acid modified rice husk and nano-silicon derived from rice husk on phosphorus use efficiency in wheat and lettuce plants with differing silicon contents. Journal of Plant Nutrition 46 (10):2329–41. doi:10.1080/01904167.2022.2155535.
  • Tiecher, T., S. M. V. Fontoura, V. G. Ambrosini, A. E. Araújo, L. A. Alves, C. Bayer, and L. C. Gatiboni. 2023. Soil phosphorus forms and fertilizer use efficiency are affected by tillage and soil acidity management. Geoderma 435:116495. doi:10.1016/j.geoderma.2023.116495.
  • Yakout, S. M., A. M. Daifullah, and S. A. El-Reefy. 2015. Pore characterization of chemically modified biocharfrom rice straw. Environmental Engineering and Management Journal 14 (2):473–80. http://omicron.ch.tuiasi.ro/EEMJ/. doi:10.30638/eemj.2015.049.
  • Yan, P., C. Shen, Z. Zou, J. Fu, X. Li, L. Zhang, L. Zhang, W. Han, and L. Fan. 2021. Biochar stimulates tea growth by improving nutrients in acidic soil. Scientia Horticulturae 283:110078. doi:10.1016/j.scienta.2021.110078.
  • Yuan, J., R. Xu, and H. Zhang. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology 102 (3):3488–97. doi:10.1016/j.biortech.2010.11.018.
  • Walan, P., S. Davidsson, S. Johansson, and M. Höök. 2014. Phosphate rock production and depletion: Regional disaggregated modeling and global implications. Resources, Conservation and Recycling 93:178–87. doi:10.1016/j.resconrec.2014.10.011.
  • Walinga, I., W. van Vark, V. J. G. Houba, and J. J. van der Lee. 1989. Plant analysis procedures. In Soil and Plant Analysis, 263. Wageningen Agricultural University. Part 7.
  • White, P. J., and J. P. Hammond. 2008. Phosphorus nutrition of terrestrial plants. the ecophysiology of plant-phosphorus interactions, 51–81. Dordrecht: Springer.
  • Zhang, H., C. Chen, E. M. Gray, S. E. Boyd, H. Yang, and D. Zhang. 2016. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma 276:1–6. doi:10.1016/j.geoderma.2016.04.02.
  • Zhang, L., Z. Yao, L. Zhao, Z. Li, W. Yi, K. Kang, and J. Jia. 2021. Synthesis and characterization of different activated biochar catalysts for removal of biomass pyrolysis tar. Energy 232:120927. doi:10.1016/j.energy.2021.120927.
  • Zhao, L., W. Zheng, O. Mašek, X. Chen, B. Gu, B. K. Sharma, and X. Cao. 2017. Roles of phosphoric acid in biochar formation: Synchronously improving carbon retention and sorption capacity. Journal of Environmental Quality 46 (2):393–401. doi:10.2134/jeq2016.09.0344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.