81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Residual effect of legumes on maize yield, nitrogen balance and soil organic carbon stabilization under legume – maize cropping systems

, , , , , , , & show all
Received 05 Dec 2023, Accepted 24 Apr 2024, Published online: 25 May 2024

References

  • Adams, W. A. 1973. The effect of organic matter on the bulk and true densities of some uncultivated podzolic soils. Journal of Soil Science 24 (1):10–7. doi: 10.1111/j.1365-2389.1973.tb00737.x.
  • Amos, B., and D. T. Walters. 2006. Maize root biomass and net rhizodeposited carbon: An analysis of the literature. Soil Science Society of America Journal 70 (5):1489–503. doi: 10.2136/sssaj2005.0216.
  • Anantha, K. C., B. Mandal, S. Badole, S. P. Majumder, A. Datta, D. Padhan, and M. V. S. Babu. 2022. Distribution of sequestered carbon in different pools in Alfisols under long-term groundnut system of hot arid region of India. European Journal of Agronomy 135:126467. doi: 10.1016/j.eja.2022.126467.
  • Blanco-Canqui, H., T. M. Shaver, J. L. Lindquist, C. A. Shapiro, R. W. Elmore, C. A. Francis, and G. W. Hergert. 2015. Cover crops and ecosystem services: Insights from studies in temperate soils. Agronomy Journal 107 (6):2449–74. doi: 10.2134/agronj15.0086.
  • Bolinder, M. A., H. H. Janzen, E. G. Gregorich, D. A. Angers, and A. J. VandenBygaart. 2007. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agriculture, Ecosystems & Environment 118 (1–4):29–42. doi: 10.1016/j.agee.2006.05.013.
  • Bruulsema, T. W., and B. R. Christie. 1987. Nitrogen contribution to succeeding corn from alfalfa and red clover. Agronomy Journal 79 (1):96–100. 00021962007900010020x doi: 10.2134/agronj1987.
  • Chalk, P. M. 1998. Dynamics of biologically fixed N in legume-cereal rotation: A review. Australian Journal of Agricultural Research 49 (3):303–16. doi: 10.1071/A97013.
  • Chen, J., M. Heiling, C. Resch, M. Mbaye, R. Gruber, and G. Dercon. 2018. Does maize and legume crop residue mulch matter in soil organic carbon sequestration? Agriculture, Ecosystems & Environment 265:123–31. doi: 10.1016/j.agee.2018.06.005.
  • Chimonyo, V. G. P., S. S. Snapp, and R. Chikowo. 2019. Grain legumes increase yield stability in maize based cropping systems. Crop Science 59 (3):1222–35. doi: 10.2135/cropsci2018.09.0532.
  • Cochran, W. G., and G. M. Cox. 1957. Experimental designs (2nd ed.). New Jersey, USA: John Wiley & Sons.
  • Cotrufo, M. F., M. D. Wallenstein, C. M. Boot, K. Denef, and E. Paul. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology 19 (4):988–95. doi: 10.1111/gcb.12113.
  • Danso, S. K. A., and I. Papastylianou. 1992. Evaluation of the nitrogen contribution of legumes to subsequent cereals. The Journal of Agricultural Science 119 (1):13–8. doi: 10.1017/S0021859600071495.
  • Datta, A., B. Mandal, S. Badole, K. C. A, S. P. Majumder, D. Padhan, N. Basak, A. Barman, R. Kundu, and W. N. Narkhede. 2018. Interrelationship of biomass yield, carbon input, aggregation, carbon pools and its sequestration in Vertisols under long-term sorghum-wheat cropping system in semi-arid tropics. Soil and Tillage Research 184:164–75. doi: 10.1016/j.still.2018.07.004.
  • Datta, A., M. Choudhury, P. C. Sharma, P. Kaulash, H. S. Jat, M. L. Jat, and S. Kar. 2022a. Stability of humic acid carbon under conservation agriculture practices. Soil & Tillage Research 216:105240. doi: 10.1016/j.still.2021.105240.
  • Datta, A., D. Nayak, J. U. Smith, P. C. Sharma, H. S. Jat, A. K. Yadav, and M. L. Jat. 2022b. Climate Smart agricultural practices improve soil quality through organic carbon enrichment and lower greenhouse gas emissions in farms of bread bowl of India. Soil Research 60 (6):455–69. doi: 10.1071/SR21031.
  • Datta, A., N. Basak, S. K. Chaudhari, and D. K. Sharma. 2015. Soil properties and organic carbon distribution under different land uses in reclaimed sodic soils of North-West India. Geoderma Regional 4:134–46.). doi: 10.1016/j.geodrs.2015.01.006.
  • Dhakal, Y., R. S. Meena, and S. Kumar. 2016. Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of greengram. Legume Research-An International Journal 39 (4):590–4. doi: 10.18805/lr.v0iOF.9435.
  • Erenstein, O., M. Jaleta, K. Sonder, K. Mottaleb, and B. M. Prasanna. 2022. Global maize production, consumption and trade: Trends and R&D implications. Food Security 14 (5):1295–319. doi: 10.1007/s12571-022-01288-7.
  • Erenstein, O., A. Samaddar, N. Teufel, and M. Blümmel. 2011. The paradox of limited maize stover use in India’s smallholder crop-livestock systems. Experimental Agriculture 47 (4):677–704. doi: 10.1017/S0014479711000433.
  • Franke, A. C., G. J. van den Brand, B. Vanlauwe, and K. E. Giller. 2018. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review. Agriculture, Ecosystems & Environment 261:172–85. doi: 10.1016/j.agee.2017.09.029.
  • Geng, S., J. Tan, L. Li, Y. Miao, and Y. Wang. 2023. Legumes can increase the yield of subsequent wheat with or without grain harvesting compared to Gramineae crops: A meta-analysis. European Journal of Agronomy 142:126643. doi: 10.1016/j.eja.2022.126643.
  • Ghosh, P. K., M. S. Venkatesh, K. K. Hazra, and N. Kumar. 2012. Longer-term effect of pulses and nutrient management on soil organic carbon dynamics and sustainability on an inceptisol of Indo-Gangetic Plains of India. Experimental Agriculture 48 (4):473–87. doi: 10.1017/S0014479712000130.
  • Giller, K. E., and G. Cadisch. 1995. Future benefits from biological nitrogen fixation: An ecological approach to agriculture. In Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural Systems: Extended versions of papers presented at the Symposium on Biological Nitrogen Fixation for Sustainable Agriculture at the 15th Congress of Soil Science, Acapulco, Mexico, 1994, 255–77. Springer Netherlands. doi: 10.1007/978-94-011-0053-3_13.
  • Gou, X., P. B. Reich, L. Qiu, M. Shao, G. Wei, J. Wang, and X. Wei. 2023. Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types. Global Change Biology 29 (14):4028–43. doi: 10.1111/gcb.16742.
  • Hemwong, S., G. Cadisch, B. Toomsan, V. Limpinuntana, P. Vityakon, and A. Patanothai. 2008. Dynamics of residue decomposition and N2 fixation of grain legumes upon sugarcane residue retention as an alternative to burning. Soil and Tillage Research 99 (1):84–97. doi: 10.1016/j.still.2008.01.003.
  • Hellin, J., and O. Erenstein. 2009. Maize-poultry value chains in India: Implications for research and development. Journal of New Seeds 10 (4):245–63. doi: 10.1080/15228860903303932.
  • Hufnagel, J., M. Reckling, and F. Ewert. 2020. Diverse approaches to crop diversification in agricultural research. A review. Agronomy for Sustainable Development 40 (2):14. doi: 10.1007/s13593-020-00617-4.
  • IIMR. 2020. Indian Maize Scenario. ICAR-Indian Institute of Maize Research. Website: https://iimr.icar.gov.in/?page_id=51
  • Jackson, M. L. 1973. Soil Chemical Analysis. New Delhi, India: Pentice hall of India Pvt. Ltd.,. 498: 151–4.
  • Jat, H. S., A. Datta, M. Choudhary, P. C. Sharma, A. K. Yadav, V. Choudhary, M. K. Gathala, M. L. Jat, and A. McDonald. 2019. Climate smart agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of North-West India. Catena 181:104059. doi: 10.1016/j.catena.2019.05.005.
  • Kebede, E. 2021. Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Frontiers in Sustainable Food Systems 5:767998. doi: 10.3389/fsufs.2021.767998.
  • Kong, A. Y., J. Six, D. C. Bryant, R. F. Denison, and C. van Kessel. 2005. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Science Society of America Journal 69 (4):1078–85. doi: 10.2136/sssaj2004.0215.
  • Kumar, L., N. Chhogyel, T. Gopalakrishnan, M. K. Hasan, S. L. Jayasinghe, C. S. Kariyawasam, B. K. Kogo, and S. Ratnayake. 2021. Future Foods: Global Trends, Opportunities, and Sustainability Challenges, 49–79.
  • Kuzyakov, Y., and K. Schneckenberger. 2004. Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation. Archives of Agronomy and Soil Science 50 (1):115–32. doi: 10.1080/03650340310001627658.
  • Ladha, J. K., M. B. Peoples, P. M. Reddy, J. C. Biswas, A. Bennett, M. L. Jat, and T. J. Krupnik. 2022. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crop Research 283:108541. doi: 10.1016/j.fcr.2022.108541.
  • Lal, R. 2017. Improving soil health and human protein nutrition by pulses-based cropping systems. Advances in Agronomy 145:167–204. doi: 10.1016/bs.agron.2017.05.003.
  • Luo, Z., E. Wang, and O. J. Sun. 2010. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems & Environment 139 (1–2):224–31. doi: 10.1016/j.agee.2010.08.006.
  • Majumder, B., B. Mandal, and P. K. Bandyopadhyay. 2008. Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice–berseem agroecosystem. Biology and Fertility of Soils 44 (3):451–61. doi: 10.1007/s00374-007-0226-6.
  • Matsumoto, N., W. Nobuntou, N. Punlai, T. Sugino, P. Rujikun, S. Luanmanee, and K. Kawamura. 2021. Soil carbon sequestration on a maize-mungbean field with rice straw mulch, no-tillage, and chemical fertilizer application in Thailand from 2011 to 2015. Soil Science and Plant Nutrition 67 (2):190–6. doi: 10.1080/00380768.2020.1857660.
  • Meena, R. S., and R. Lal. 2018. Legumes and sustainable use of soils. Legumes for soil health and sustainable management. In Legumes for soil health and sustainable management, ed. R. Meena, A. Das, G. Yadav, and R. Lal, 1–31. Singapore: Springer. doi: 10.1007/978-981-13-0253-4_1.
  • Mirhosseini, H., and B. T. Amid. 2012. A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Research International 46 (1):387–98. doi: 10.1016/j.foodres.2011.11.017.
  • Mubarak, A. R., A. B. Rosenani, A. R. Anuar, and S. Zauyah. 2002. Decomposition and nutrient release of maize stover and groundnut haulm under tropical field conditions of Malaysia. Communications in Soil Science and Plant Analysis 33 (3–4):609–22. doi: 10.1081/CSS-120002767.
  • Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circular No. 939. Washington DC: US Government Printing Office.
  • Palmero, F., J. A. Fernandez, F. O. Garcia, R. J. Haro, P. V. V. Prasad, F. Salvagiotti, and I. A. Ciampitti. 2022. A quantitative review into the contributions of biological nitrogen fixation to agricultural systems by grain legumes. European Journal of Agronomy 136:126514. doi: 10.1016/j.eja.2022.126514.
  • Pathak, H., K. Byjesh, B. Chakrabarti, and P. K. Aggarwal. 2011. Potential and cost of carbon sequestration in Indian agriculture: Estimates from long-term field experiments. Field Crops Research 120 (1):102–11. doi: 10.1016/j.fcr.2010.09.006.
  • Peng, Y., C. Li, and F. B. Fritschi. 2014. Diurnal dynamics of maize leaf photosynthesis and carbohydrate concentrations in response to differential N availability. Environmental and Experimental Botany 99:18–27. doi: 10.1016/j.envexpbot.2013.10.013.
  • Plaza-Bonilla, D., J. M. Nolot, D. Raffaillac, and E. Justes. 2017. Innovative cropping systems to reduce N inputs and maintain wheat yields by inserting grain legumes and cover crops in southwestern France. European Journal of Agronomy 82:331–41. doi: 10.1016/j.eja.2016.05.010.
  • Preissel, S., M. Reckling, N. Schläfke, and P. Zander. 2015. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. Field Crops Research 175:64–79. doi: 10.1016/j.fcr.2015.01.012.
  • Rakshit, S., K. G. Chikkappa, S. L. Jat, B. S. Dhillon, and N. N. Singh. 2017. Scaling-up of proven technology for maize improvement through participatory approach in India. Best Practices of Maize Production Technologies in South Asia. Published by the SAARC Agriculture Centre (SAC), South Asian Association for Regional Cooperation, BARC Complex, Farmgate, New Airport Road, Dhaka 1215. Bangladesh, 36–60.
  • Raseduzzaman, M. D., and S. S. Jensen. 2017. Does intercropping enhance yield stability in arable crop production? A meta-analysis. European Journal of Agronomy 91:25–33. doi: 10.1016/j.eja.2017.09.009.
  • Roy, D., A. Datta, H. S. Jat, M. Choudhary, P. C. Sharma, P. K. Singh, and M. L. Jat. 2022. Impact of long-term conservation agriculture on soil quality under cereal based systems of North West India. Geoderma 405:115391. doi: 10.1016/j.geoderma.2021.115391.
  • Sainju, U. M. 2017. Determination of nitrogen balance in agroecosystems. MethodsX 4:199–208. doi: 10.1016/j.mex.2017.06.001.
  • Shafi, M., J. Bakht, M. T. Jan, and Z. Shah. 2007. Soil C and N dynamics and maize (Zea mays L.) yield as affected by cropping systems and residue management in North-western Pakistan. Soil and Tillage Research 94 (2):520–9. doi: 10.1016/j.still.2006.10.002.
  • Shamoot, S. O., L. McDonald, and W. V. Bartholomew. 1968. Rhizo-deposition of organic debris in soil. Soil Science Society of America Journal 32 (6):817–20. doi: 10.2136/sssaj1968.03615995003200060031x.
  • Sharma, A. R., and U. K. Behera. 2009. Recycling of legume residues for nitrogen economy and higher productivity in maize (Zea mays)–wheat (Triticum aestivum) cropping system. Nutrient Cycling in Agroecosystems 83 (3):197–210. doi: 10.1007/s10705-008-9212-0.
  • Singh, B. 2023. Long-term fertilizer nitrogen management—Soil health conundrum. Pedosphere 34 (1):23–25. doi: 10.1016/j.pedsph.2023.09.013.
  • Srinivasarao, C., B. Venkateswarlu, R. Lal, A. K. Singh, S. Kundu, K. P. R. Vittal, J. J. Patel, and M. M. Patel. 2011. Long‐term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet‐cluster bean‐castor rotation in Western India. Land Degradation & Development 25 (2):173–83. doi: 10.1002/ldr.1158.
  • Srinivasarao, C., B. Venkateswarlu, R. Lal, A. K. Singh, S. Kundu, K. P. R. Vittal, G. Balaguravaiah, M. V. S. Babu, G. R. Chary, M. B. B. Prasadbabu, et al. 2012. Soil carbon sequestration and agronomic productivity of an Alfisol for a groundnut-based system in a semiarid environment in southern India. European Journal of Agronomy 43:40–8. doi: 10.1016/j.eja.2012.05.001.
  • Srivastava, R. K., R. K. Panda, A. Chakraborty, and D. Halder. 2018. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Research 221:339–49. doi: 10.1016/j.fcr.2017.06.019.
  • Stagnari, F., A. Maggio, A. Galieni, and M. Pisante. 2017. Multiple benefits of legumes for agriculture sustainability: An overview. Chemical and Biological Technologies in Agriculture 4 (1):13. doi: 10.1186/s40538-016-0085-1.
  • Subbiah, B. V., and G. L. Asija. 1956. A rapid procedure for the estimation of available nitrogen in soil. Current Science 25 (8):259–60.
  • van Groenigen, J. W., C. Van Kessel, B. A. Hungate, O. Oenema, D. S. Powlson, and K. J. Van Groenigen. 2017. Response to the letter to the editor regarding our viewpoint “sequestering soil organic carbon: A nitrogen dilemma. Environmental Science & Technology 51 (20):11503–4. doi: 10.1021/acs.est.7b04554.
  • Veloso, M. G., D. Cecagno, and C. Bayer. 2019. Legume cover crops under no-tillage favor organomineral association in microaggregates and soil C accumulation. Soil and Tillage Research 190:139–46. doi: 10.1016/j.still.2019.03.003.
  • Verchot, L. V., L. Dutaur, K. D. Shepherd, and A. Albrecht. 2011. Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils. Geoderma 161 (3-4):182–93. doi: 10.1016/j.geoderma.2010.12.017.
  • Virk, A. L., B. J. Lin, Z. R. Kan, J. Y. Qi, Y. P. Dang, R. Lal, X. Zhao, and H. L. Zhang. 2022. Simultaneous effects of legume cultivation on carbon and nitrogen accumulation in soil. Advances in Agronomy 171:75–110. doi: 10.1016/bs.agron.2021.08.002.
  • Walkley, A., and I. A. Black. 1934. An examination of the DegtJareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37 (1):29–38. doi: 10.1097/00010694-193401000-00003.
  • Whipps, J. M. 1985. Effect of CO2 concentration on growth, carbon distribution and loss of carbon from the roots of maize. Journal of Experimental Botany 36 (4):644–51. doi: 10.1093/jxb/36.4.644.
  • Xia, Z., Q. Song, K. Harada, J. Chen, and C. Zhou. 2023. Genetic characterization of yield-and quality-related traits in legumes. Frontiers in Plant Science 14:1281138. doi: 10.3389/fpls.2023.1281138.
  • Yadav, G. S., R. Lal, R. S. Meena, S. Babu, A. Das, S. N. Bhowmik, M. Datta, J. Layak, and P. Saha. 2019. Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecological Indicators 105:303–15. doi: 10.1016/j.ecolind.2017.08.071.
  • Yue, K., L. Li, J. Xie, Y. Liu, J. Xie, S. Anwar, and S. K. Fudjoe. 2022. Nitrogen supply affects yield and grain filling of maize by regulating starch metabolizing enzyme activities and endogenous hormone contents. Frontiers in Plant Science 12:798119. doi: 10.3389/fpls.2021.798119.
  • Zak, D. R., Z. B. Freedman, R. A. Upchurch, M. Steffens, and I. Kögel-Knabner. 2017. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition. Global Change Biology 23 (2):933–44. doi: 10.1111/gcb.13480.
  • Zhang, Y., X. Q. Jing, Y. B. Wang, L. X. Li, and B. S. Zhang. 2010. Research on suitable plant density of maize hybrids with different plant types. Journal of Maize Sciences 18:77–80.
  • Zhao, J., J. Chen, D. Beillouin, H. Lambers, Y. Yang, P. Smith, Z. Zeng, J. E. Olesen, and H. Zang. 2022. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nature Communications 13 (1):4926. doi: 10.1038/s41467-022-32464-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.