29
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Tall wheatgrass response toward phosphorus deficiency: a constraint to its use as a forage resource in marginal soils

, , , &
Pages 2511-2529 | Received 01 Apr 2022, Accepted 07 May 2024, Published online: 23 May 2024

References

  • Acuña, M., I. Varea, M. Maciel, J. Lavandera, and A. Andrés. 2016. Mejoramiento genético para ambientes ganaderos: Agropiro alargado y trébol de olor blanco [Breeding of tall wheatgrass and white sweetclover for livestock environments]. In XVI Reunión Anual de Forrajeras. Opciones forrajeras para ambientes ganaderos, eds. J. Camarasa, J. Lavandera, J. Mattera, and C. Novarese, 16–25. Buenos Aires, Argentina: Ediciones INTA, Colección Divulgación. [In Spanish].
  • Agnusdei, M. G., S. G. Assuero, R. C. Fernández Grecco, J. J. Cordero, and V. H. Burghi. 2007. Influence of sward condition on leaf tissue turnover in tall fescue and tall wheatgrass swards under continuous grazing. Grass and Forage Science 62 (1):55–65. doi: 10.1111/j.1365-2494.2007.00561.x.
  • Assuero, S. G., A. Mollier, and S. Pellerin. 2004. The decrease in growth of phosphorus deficient maize leaves is related to a lower cell production. Plant, Cell & Environment 27 (7):887–95. doi: 10.1111/j.1365-3040.2004.01194.x.
  • Assuero, S. G., and J. A. Tognetti. 2010. Tillering regulation by endogenous and environmental factors and its agricultural management. The Americas Journal of Plant Science and Biotechnology 4 (SI1):35–48. http://globalsciencebooks.info/Online/GSBOnline/images/2010/AmJPSB_4(SI1)/AmJPSB_4(SI1)35-48o.pdf.
  • Bahar, N. H. A., P. P. G. Gauthier, O. S. O Sullivan, T. Brereton, J. R. Evans, and O. K. Atkin. 2018. Phosphorus deficiency alters scaling relationships between leaf gas exchange and associated traits in a wide range of contrasting Eucalyptus species. Functional Plant Biology: FPB 45 (8):813–26. doi: 10.1071/FP17134.
  • Barkworth, M. E., L. K. Anderton, K. C. Capels, S. Long, and M. B. Piep. 2007. Manual of grasses for North America. United States: University Press of Colorado.
  • Bartholomew, P. W., and R. D. Williams. 2005. Cool–season grass development response to accumulated temperature under a range of temperature regimes. Crop Science 45 (2):529–34. doi: 10.2135/cropsci2005.0529.
  • Borrajo, C. I., A. M. Sánchez-Moreiras, and M. J. Reigosa. 2018. Morpho-physiological responses of tall wheatgrass populations to different levels of water stress. PloS One 13 (12):e0209281. doi: 10.1371/journal.pone.0209281.
  • Bos, H. J., and J. H. Neuteboom. 1998. Morphological analysis and tiller number dynamics of wheat (Triticum aestivum L.): responses to temperature and light intensity. Annals of Botany 81 (1):131–9. https://www.jstor.org/stable/42764995. doi: 10.1006/anbo.1997.0531.
  • Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59 (1):39–46. doi: 10.1097/00010694-194501000-00006.
  • Carstensen, A., A. Herdean, S. B. Schmidt, A. Sharma, C. Spetea, M. Pribil, and S. Husted. 2018. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology 177 (1):271–84. doi: 10.1104/pp.17.01624.
  • Cui, L., Y. Ren, T. D. Murray, W. Yan, Q. Guo, Y. Niu, Y. Sun, and H. Li. 2018. Development of perennial wheat through hybridization between wheat and wheatgrasses: A review. Engineering 4 (4):507–13. doi: 10.1016/j.eng.2018.07.003.
  • De Groot, C. C., L. F. M. Marcelis, R. Van Den Boogaard, and H. Lambers. 2001. Growth and dry-mass partitioning in tomato as affected by phosphorus nutrition and light. Plant, Cell & Environment 24 (12):1309–17. doi: 10.1046/j.0016-8025.2001.00788.x.
  • de Souza Campos, P. M., P. Cornejo, C. Rial, F. Borie, R. M. Varela, A. Seguel, and J. A. López-Ráez. 2019. Phosphate acquisition efficiency in wheat is related to root: Shoot ratio, strigolactone levels, and PHO2 regulation. Journal of Experimental Botany 70 (20):5631–42. doi: 10.1093/jxb/erz349.
  • Di Marco, O. N., H. Harkes, and M. G. Agnusdei. 2013. Quality of tall wheatgrass (Thinopyrum ponticum) in a vegetative state in relation to age and length of leaves. Revista de Investigaciones Agropecuarias 39 (1):105–10. http://ria.inta.gob.ar/sites/default/files/numeros/ria-39-1-2013.pdf.
  • Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28 (3):350–6. doi: 10.1021/ac60111a017.
  • Elberse, I. A. M., J. M. M. Van Damme, and P. H. Van Tienderen. 2003. Plasticity of growth characteristics in wild barley (Hordeum spontaneum) in response to nutrient limitation. Journal of Ecology 91 (3):371–82. doi: 10.1046/j.1365-2745.2003.00776.x.
  • García, F. O., L. I. Picone, and I. A. Ciampitti. 2015. Fósforo [Phosphorus]. In Fertilidad de suelos y fertilización de cultivos, eds. F. O. García and H. E. Echeverría, 229–64. Buenos Aires, Argentina: Ediciones INTA. [In Spanish].
  • Gutiérrez-Boem, F. H., and G. W. Thomas. 1998. Phosphorus nutrition affects wheat response to water deficit. Agronomy Journal 90 (2):166–71. doi: 10.2134/agronj1998.00021962009000020008x.
  • Ham, B. K., J. Chen, Y. Yan, and W. J. Lucas. 2018. Insights into plant phosphate sensing and signaling. Current Opinion in Biotechnology 49:1–9. doi: 10.1016/j.copbio.2017.07.005.
  • Hasan, M. M., M. M. Hasan, J. A. T. da Silva, J. A. T, and X. Li. 2016. Regulation of phosphorus uptake and utilization: Transitioning from current knowledge to practical strategies. Cellular & Molecular Biology Letters 21 (1):7. doi: 10.1186/s11658-016-0008-y.
  • Hoagland, D. R., and D. I. Arnon. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347:1–32.
  • Hunt, R., D. R. Causton, B. Shipley, and A. P. Askew. 2002. A modern tool for classical plant growth analysis. Annals of Botany 90 (4):485–8. doi: 10.1093/aob/mcf214.
  • Kanno, S., J.-F. Arrighi, S. Chiarenza, V. Bayle, R. Berthomé, B. Péret, H. Javot, E. Delannoy, E. Marin, T. M. Nakanishi, et al. 2016. A novel role for the root cap in phosphate uptake and homeostasis. eLife 5:e14577. doi: 10.7554/eLife.14577.
  • Kim, H. K., E. J. Van Oosterom, M. Dingkuhn, D. Luquet, and G. L. Hammer. 2010. Regulation of tillering in sorghum: Environmental effects. Annals of Botany 106 (1):69–78. doi: 10.1093/aob/mcq080.
  • Lenth, R. 2020. emmeans: Estimated marginal means, aka least-squares means. R package version 1.2.6. https://CRAN.R-project.org/package=emmeans
  • Liao, H., G. Rubio, X. Yan, A. Cao, K. M. Brown, and J. P. Lynch. 2001. Effect of phosphorus availability on basal root shallowness in common bean. Plant and Soil 232 (1/2):69–79. doi: 10.1023/A:1010381919003.
  • Li, H., W. Li, Q. Zheng, M. Zhao, J. Wang, B. Li, and Z. Li. 2023. Salinity threshold of tall wheatgrass for cultivation in coastal saline and alkaline land. Agriculture 13 (2):337. doi: 10.3390/agriculture13020337.
  • Li, X., B. Schmid, F. Wang, and C. E. Paine. 2016. Net assimilation rate determines the growth rates of 14 species of subtropical forest trees. PloS One 11 (3):e0150644. doi: 10.1371/journal.pone.0150644.
  • Li, J., Y. Xie, A. Dai, L. Liu, and Z. Li. 2009. Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. Journal of Genetics and Genomics = Yi Chuan Xue Bao 36 (3):173–83. doi: 10.1016/S1673-8527(08)60104-6.
  • Li, X., R. Zeng, and H. Liao. 2016. Improving crop nutrient efficiency through root architecture modifications. Journal of Integrative Plant Biology 58 (3):193–202. doi: 10.1111/jipb.12434.
  • Loades, K. W., A. G. Bengough, M. F. Bransby, and P. D. Hallett. 2013. Biomechanics of nodal, seminal and lateral roots of barley: Effects of diameter, waterlogging and mechanical impedance. Plant and Soil 370 (1–2):407–18. doi: 10.1007/s11104-013-1643-y.
  • Lorenzo, M., S. G. Assuero, and J. A. Tognetti. 2015. Low temperature differentially affects tillering in spring and winter wheat in association with changes in plant carbon status. Annals of Applied Biology 166 (2):236–48. doi: 10.1111/aab.12177.
  • Luquet, D., B. G. Zhang, M. Dingkuhn, A. Dexet, and A. Clément-Vidal. 2005. Phenotypic plasticity of rice seedlings: case of phosphorus deficiency. Plant Production Science 8 (2):145–51. doi: 10.1626/pps.8.145.
  • Maddaloni, J., and L. Ferrari. 2005. Forrajeras y pasturas del ecosistema templado húmedo de la Argentina [Forage and pasture species of the temperate humid ecosystem in Argentina]. Buenos Aires, Argentina: Ediciones INTA, FCA-Universidad Nacional de Lomas de Zamora. [In Spanish].
  • Maharajan, T., S. A. Ceasar, T. P. A. Krishna, and S. Ignacimuthu. 2019. Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets. Planta 250 (5):1433–48. doi: 10.1007/s00425-019-03237-9.
  • Martinefsky, M. J. 2008. Análisis de la variabilidad intraespecífica de la respuesta a una deficiencia de P en festuca alta [Analysis of intraspecific variability of the response to P deficiency in tall fescue]. Tesis Magister Scientiae. Balcarce, Argentina: Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata. [In Spanish with English abstract].
  • Martinefsky, M. J., S. G. Assuero, A. Mollier, and S. Pellerin. 2010. Analysis of the response of two tall fescue cultivars of different origin to P deficiency. Environmental and Experimental Botany 69 (3):250–8. doi: 10.1016/j.envexpbot.2010.04.009.
  • Martínez-Nöel, G. M. A., and J. A. Tognetti. 2018. Sugar signaling under abiotic stress in plants. In Plant metabolites and regulation under environmental stress, eds. P. Ahmad, M. A. Ahanger, V. P. Singh, D. K. Tripathi, P. Alam, and M. N. Alyemeni, 397–406. London, UK: Academic Press, Elsevier.
  • Martyniak, D., G. Żurek, and K. Prokopiuk. 2017. Biomass yield and quality of wild populations of tall wheatgrass [Elymus elongatus (Host.) Runemark]. Biomass and Bioenergy 101:21–9. doi: 10.1016/j.biombioe.2017.03.025.
  • Mollier, A., and S. Pellerin. 1999. Maize root system growth and development as influenced by phosphorus deficiency. Journal of Experimental Botany 50 (333):487–97. doi: 10.1093/jxb/50.333.487.
  • Neji, M., S. Kouas, M. Gandour, S. Aydi, and C. Abdelly. 2019. Genetic variability of morpho-physiological response to phosphorus deficiency in Tunisian populations of Brachypodium hybridum. Plant Physiology and Biochemistry: PPB 143:246–56. doi: 10.1016/j.plaphy.2019.09.006.
  • Neji, M., S. Tlahig, K. Hessini, W. Taamalli, C. Abdelly, and S. Kouas. 2021. Variation of forage quality traits in Tunisian populations of Brachypodium hybridum in response to phosphorus deficiency. Crop Science 61 (6):4038–54. doi: 10.1002/csc2.20613.
  • Niu, Y. F., R. S. Chai, G. L. Jin, H. Wang, C. X. Tang, and Y. S. Zhang. 2012. Responses of root architecture development to low phosphorus availability: A review. Annals of Botany 112 (2):391–408. doi: 10.1093/aob/mcs285.
  • Nussaume, L., S. Kanno, H. Javot, E. Marin, N. Pochon, A. Ayadi, T. M. Nakanishi, and M.-C. Thibaud. 2011. Phosphate import in plants: Focus on the PHT1 transporters. Frontiers in Plant Science 2:83. doi: 10.3389/fpls.2011.00083.
  • Pesqueira, J., J. Otondo, and M. García. 2017. Production of biomass, cover and forage quality of Chloris gayana and Panicum coloratum in an alkaline/sodic soil of the Depression del Salado. Revista de Investigaciones Agropecuarias 43:231–8. (In Spanish with English abstract). http://ria.inta.gob.ar/sites/default/files/trabajosenprensa/pesqueira-ingles.pdf.
  • Pieters, A. J., M. J. Paul, and D. W. Lawlor. 2001. Low sink demand limits photosynthesis under Pi deficiency. Journal of Experimental Botany 52 (358):1083–91. doi: 10.1093/jexbot/52.358.1083.
  • Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team. 2021. nlme: Linear and nonlinear mixed effects models. R package version 3.1-152. https://CRAN.R-project.org/package=nlme
  • Poorter, H., and O. Nagel. 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Australian Journal of Plant Physiology 27 (12):595–607. doi: 10.1071/PP99173_CO.
  • Poorter, H., K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot, and L. Mommer. 2012. Biomass allocation to leaves, stems and roots: Meta‐analyses of interspecific variation and environmental control. The New Phytologist 193 (1):30–50. doi: 10.1111/j.1469-8137.2011.03952.x.
  • Poorter, H., and A. Van der Werf. 1998. Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species. In Inherent variation in plant growth. Physiological mechanisms and ecological consequences, eds. H. Lambers, H. Poorter, and M. M. I. Van Vuuren, 309–36. Leiden, Netherlands: Backhuys Publishers.
  • Prystupa, P., G. A. Slafer, and R. Savin. 2003. Leaf appearance, tillering and their coordination in response to NxP fertilization in barley. Plant and Soil 255 (2):587–94. doi: 10.1023/A:1026018702317.
  • R Core Team. 2020. R: A language and environment for statistical computing. R version 3.6.3 (2020-02-29). Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
  • Rajamanickam, V., K. K. Vinod, K. Vengavasi, T. Kumar, V. Chinnusamy, and R. Pandey. 2024. Root architectural adaptations to phosphorus deficiency: Unraveling genotypic variability in wheat seedlings. Agriculture 14 (3):447. doi: 10.3390/agriculture14030447.
  • Rodríguez, A. M., E. J. Jacobo, P. Scardaoni, and V. A. Deregibus. 2007. Effect of phosphate fertilization on flooding pampa grasslands (Argentina). Rangeland Ecology & Management 60 (5):471–8. doi: 10.2111/1551-5028(2007)60[471:EOPFOF]2.0.CO;2.
  • Rodríguez, D., W. G. Keltjens, and J. Goudriaan. 1998a. Plant leaf area expansion and assimilate production in wheat (Triticum aestivum L.) growing under low phosphorus conditions. Plant and Soil 200 (2):227–40. doi: 10.1023/A:1004310217694.
  • Rodríguez, D., M. C. Pomar, and J. Goudriaan. 1998b. Leaf primordia initiation, leaf emergence and tillering in wheat (Triticum aestivum L.) grown under low-phosphorus conditions. Plant and Soil 202 (1):149–57. doi: 10.1023/A:1004352820444.
  • Rodríguez, D., F. H. Andrade, and J. Goudriaan. 2000. Does assimilate supply limit leaf expansion in wheat grown in the field under low phosphorus availability? Field Crops Research 67 (3):227–38. doi: 10.1016/S0378-4290(00)00098-8.
  • Ros, M. B., G. B. De Deyn, G. F. Koopmans, O. Oenema, and J. W. van Groenigen. 2018. What root traits determine grass resistance to phosphorus deficiency in production grassland? Journal of Plant Nutrition and Soil Science 181 (3):323–35. doi: 10.1002/jpln.201700093.
  • Rose, T. J., T. Kretzschmar, L. Liu, G. Lancaster, and M. Wissuwa. 2016. Phosphorus deficiency alters nutrient accumulation patterns and grain nutritional quality in rice. Agronomy 6 (4):52. doi: 10.3390/agronomy6040052.
  • Ryser, P., B. Verduyn, and H. Lambers. 1997. Phosphorus allocation and utilization in three grass species with contrasting response to N and P supply. The New Phytologist 137 (2):293–302. doi: 10.1046/j.1469-8137.1997.00807.x.
  • Sainz Rozas, H., H. Echeverría, and H. Angelini. 2012. Fósforo disponible en suelos agrícolas de la región Pampeana y ExtraPampeana argentina [Available phosphorus in agricultural soils of the Pampean and ExtraPampean regions of Argentina]. Revista de Investigaciones Agropecuarias 38 (1):33–39. https://www.redalyc.org/pdf/864/86423614007.pdf. [In Spanish with English abstract].
  • Schachtman, D. P., R. J. Reid, and S. M. Ayling. 1998. Phosphorus uptake by plants: From soil to cell. Plant Physiology 116 (2):447–53. doi: 10.1104/pp.116.2.447.
  • Scheinost, P., D. Tilley, D. Ogle, and M. Stannard. 2008. Tall wheatgrass plant guide. NRCS plants database. Baton Rouge: National Plant Data Center. http://plants.usda.gov.
  • Shen, Q., Z. Wen, Y. Dong, H. Li, Y. Miao, and J. Shen. 2018. The responses of root morphology and phosphorus-mobilizing exudations in wheat to increasing shoot phosphorus concentration. AoB Plants 10 (5):ply054. doi: 10.1093/aobpla/ply054.
  • Smith, G. S., C. M. Johnston, and I. S. Cornforth. 1983. Comparison of nutrient solutions for growth of plants in sand culture. New Phytologist 94 (4):537–48. doi: 10.1111/j.1469-8137.1983.tb04863.x.
  • Smith, K. F., C. K. Lee, P. T. Borg, and P. C. Flinn. 1994. Yield, nutritive value, and phenotypic variability of tall wheatgrass grown in a nonsaline environment. Australian Journal of Experimental Agriculture 34 (5):609–14. doi: 10.1071/EA9940609.
  • Usandivaras, L. M. A., F. H. Gutiérrez-Boem, and F. Salvagiotti. 2018. Contrasting effects of phosphorus and potassium deficiencies on leaf area development in maize. Crop Science 58 (5):2099–109. doi: 10.2135/cropsci2018.02.0092.
  • Van Arendonk, J. J. C. M., and H. Poorter. 1994. The chemical composition and anatomical structure of leavesof grass species differing in relative growth rate. Plant, Cell & Environment 17 (8):963–70. doi: 10.1111/j.1365-3040.1994.tb00325.x.
  • Van Veldhoven, P. P., and G. P. Mannaerts. 1987. Inorganic and organic phosphate measurements in the nanomolar range. Analytical Biochemistry 161 (1):45–8. doi: 10.1016/0003-2697(87)90649-x.
  • Vergiev, S. 2019. Tall wheatgrass (Thinopyrum ponticum): Flood resilience, growth response to sea water immersion, and its capacity for erosion and flooding control of coastal areas. Environments 6 (9):103. doi: 10.3390/environments6090103.
  • Waddell, H. A., R. J. Simpson, H. Lambers, B. Henderson, M. H. Ryan, D. L. Garden, and A. E. Richardson. 2016. Phosphorus-utilisation efficiency and leaf-morphology traits of Rytidosperma species (wallaby grasses) that differ in their growth response to phosphorus fertilisation. Australian Journal of Botany 64 (1):65–76. doi: 10.1071/BT15202.
  • Waddell, H. A., R. J. Simpson, M. H. Ryan, H. Lambers, D. L. Garden, and A. E. Richardson. 2017. Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass). Plant and Soil 412 (1–2):7–19. doi: 10.1007/s11104-016-2933-y.
  • Wang, R., S. Funayama-Noguchi, Z. Xiong, C. Staudinger, and J. Wasaki. 2024. Phosphorus absorption kinetics and exudation strategies of roots developed by three lupin species to tackle P deficiency. Planta 259 (1):29. doi: 10.1007/s00425-023-04307-9.
  • Wang, X., J. Shen, P. Hedden, A. L. Phillips, S. G. Thomas, Y. Ge, R. W. Ashton, and W. R. Whalley. 2021. Wheat growth responses to soil mechanical impedance are dependent on phosphorus supply. Soil & Tillage Research 205:104754. doi: 10.1016/j.still.2020.104754.
  • Warton, D. I., R. A. Duursma, D. S. Falster, and S. Taskinen. 2012. smatr 3 - an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution 3 (2):257–9. doi: 10.1111/j.2041-210X.2011.00153.x.
  • Warton, D. I., and F. K. C. Hui. 2011. The arcsine is asinine: The analysis of proportions in ecology. Ecology 92 (1):3–10. doi: 10.1890/10-0340.1.
  • Warton, D. I., I. J. Wright, D. S. Falster, and M. Westoby. 2006. Bivariate line-fitting methods for allometry. Biological Reviews of the Cambridge Philosophical Society 81 (2):259–91. doi: 10.1017/s1464793106007007.
  • Wissuwa, M., G. Gamat, and A. M. Ismail. 2005. Is root growth under phosphorus deficiency affected by source or sink limitations? Journal of Experimental Botany 56 (417):1943–50. https://academic.oup.com/jxb/article/56/417/1943/484407. doi: 10.1093/jxb/eri189.
  • Yuan, H. M., M. Blackwell, S. Mcgrath, T. S. George, S. H. Granger, J. M. B. Hawkins, S. Dunham, and J. B. Shen. 2016. Morphological responses of wheat (Triticum aestivum L.) roots to phosphorus supply in two contrasting soils. The Journal of Agricultural Science 154 (1):98–108. doi: 10.1017/S0021859615000702.
  • Zamuner, E. C., J. Lloveras, and H. Echeverría. 2015. Agronomic and environmental phosphorus determinations in Argiudolls of southeast of Buenos Aires. Ciencia Del Suelo (Argentina) 33 (1):55–63. http://www.suelos.org.ar/publicaciones/vol_33n1/55-64%20p%E2%80%A0gs%201CS%20Zamuner%20%20julio%2010.pdf. [In Spanish with English abstract].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.