111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improved tomato development by biochar soil amendment and foliar application of potassium under different available soil water contents

, , , , , & show all
Received 17 Nov 2023, Accepted 24 Apr 2024, Published online: 23 May 2024

References

  • Adams, E., and R. Shin. 2014. Transport, signaling, and homeostasis of potassium and sodium in plants. Journal of Integrative Plant Biology 56 (3):231–49. doi: 10.1111/jipb.12159.
  • Agbna, G. H. D., S. Dongli, L. Zhipeng, N. A. Elshaikh, S. Guangcheng, and L. C. Timm. 2017. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae. 222:90–101. doi: 10.1016/j.scienta.2017.05.004.
  • Ahanger, M. A., and R. M. Agarwal. 2016. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma 254 (4):1471–86. doi: 10.1007/s00709-016-1037-0.
  • Ahanger, M. A., M. Qi, Z. Huang, X. Xu, N. Begum, C. Qin, C. Zhang, N. Ahmad, N. S. Mustafa, and M. Ashraf. 2021. Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicology and Environmental Safety 216:112195. doi: 10.1016/j.ecoenv.2021.112195.
  • Ahanger, M. A., S. R. Tyagi, M. R. Wani, and P. Ahmad. 2014. Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In Physiological mechanisms and adaptation strategies in plants under changing environment, 25–55. New York, NY: Springer.
  • Akhtar, S. S., G. Li, M. N. Andersen, and F. Liu. 2014. Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management 138:37–44. doi: 10.1016/j.agwat.2014.02.016.
  • Almaroai, Y. A., and M. A. Eissa. 2020. Effect of biochar on yield and quality of tomato grown on a metal-contaminated soil. Scientia Horticulturae 265:109210. doi: 10.1016/j.scienta.2020.109210.
  • Alvarenga, M. A. R. 2013. Tomato – Field, greenhouse, and hydroponics production [in Portuguese]. 3rd ed., 455. Lavras: UFLA.
  • Astm, D. 1762. 84 Standard test method for chemical analysis of wood charcoal. ASTM International 84:1–2.
  • Avila, R. G., P. C. Magalhães, A. A. Alvarenga, A. O. Lavinsky, C. N. Campos, C. C. Gomes Júnior, and T. C. Souza. 2016. Drought-tolerant maize genotypes invest in root system and maintain high harvest index during water stress. Revista Brasileira de Milho e Sorgo 15 (3):450–60. doi: 10.18512/1980-6477/rbms.v15n3p450-460.
  • Ávila, R. G., P. C. Magalhães, E. M. d Silva, A. A. d Alvarenga, C. O. d Reis, A. M. Custódio, A. Jakelaitis, and T. C. d Souza. 2021. Foliar application of potassium nitrate induces tolerance to water deficit in pre-flowering sorghum plants. Acta Scientiarum. Agronomy 44: E53069. doi: 10.4025/actasciagron.v44i1.53069.
  • Bekiaris, G., C. Peltre, L. S. Jensen, and S. Bruun. 2016. Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 168:29–36. doi: 10.1016/j.saa.2016.05.049.
  • Bernardo, S., A. A. Soares, and E. C. Mantovani. 2019. Manual de irrigação. Viçosa: Editora UFV.
  • Bertol, I., N. P. Cogo, J. Schick, J. C. Gudagnin, and A. J. Amaral. 2007. Financial aspects of nutrient losses by water erosion in different soil management systems. Revista Brasileira de Ciência Do Solo 31 (1):133–42. doi: 10.1590/S0100-06832007000100014.
  • Castellini, M., L. Giglio, M. Niedda, A. D. Palumbo, and D. Ventrella. 2015. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil and Tillage Research 154:1–13. doi: 10.1016/j.still.2015.06.016.
  • Chen, J., S. Kang, T. Du, R. Qiu, P. Guo, and R. Chen. 2013. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management 129:152–62. doi: 10.1016/j.agwat.2013.07.011.
  • Cornic, G., and A. Massacci. 1996. Leaf photosynthesis under drought stress. In Photosynthesis and the environment. Dordrecht: Kluwer Academic Publishers, 347–66. doi: 10.1007/0-306-48135-9_14.
  • Cruz, J. A., C. A. Sacksteder, A. Kanazawa, and D. M. Kramer. 2001. Contribution of electric field (Delta psi) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into Delta psi and Delta pH by ionic strength. Biochemistry 40 (5):1226–37. doi: 10.1021/bi0018.
  • da Silva Carneiro, J. S., I. C. A. Ribeiro, B. O. Nardis, C. F. Barbosa, J. F. Lustosa Filho, and L. C. A. Melo. 2021. Long-term effect of biochar-based fertilizers application in tropical soil: Agronomic efficiency and phosphorus availability. The Science of the Total Environment 760:143955. doi: 10.1016/j.scitotenv.2020.143955.
  • Dariva, F. D., M. G. F. Copati, H. P. Pessoa, F. M. Alves, F. O. Dias, E. A. T. Picoli, F. F. Da Cunha, and C. Nick. 2020. Evaluation of anatomical and physiological traits of Solanum pennellii Cor. associated with plant yield in tomato plants under water-limited conditions. Scientific Reports 10 (1):16052. doi: 10.1038/s41598-020-73004-4.
  • Dariva, F. D., H. P. Pessoa, M. G. F. Copati, G. Q. de Almeida, M. N. de Castro Filho, E. A. d T. Picoli, F. F. da Cunha, and C. Nick. 2021. Yield and fruit quality attributes of selected tomato introgression lines subjected to long-term deficit irrigation. Scientia Horticulturae 289:110426. doi: 10.1016/j.scienta.2021.110426.
  • Diatta, A. A., J. H. Fike, M. L. Battaglia, J. M. Galbraith, and M. B. Baig. 2020. Effects of biochar on soil fertility and crop productivity in arid regions: A review. Arabian Journal of Geosciences 13 (14) doi: 10.1007/s12517-020-05586-2.
  • Divéky-Ertsey, A., L. Csambalik, Z. Kókai, É. Stefanovits-Bányai, Z. Pap, M. K. Kis, and L. Sipos. 2012. Antioxidant, polyphenol and sensory analysis of cherry tomato varieties and landraces. International Journal of Horticultural Science 18 (1):75–80. doi: 10.31421/IJHS/18/1/997.
  • Domingues, R. R., Sánchez-Monedero, M. A., Spokas, K. A., Melo, L. C. A., Trugilho P. F., Valenciano, M. N, and Silva, C. A. 2020. Enhancing cation exchange capacity of weathered soils using biochar: feedstock, pyrolysis conditions and addition rate. Agronomy 10 (6):824. doi: 10.3390/agronomy10060824.
  • El-Naggar, A., S. S. Lee, J. Rinklebe, M. Farooq, H. Song, A. K. Sarmah, A. R. Zimmerman, M. Ahmad, S. M. Shaheen, and Y. S. Ok. 2019. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 337:536–54. doi: 10.1016/j.geoderma.2018.09.034.
  • Enders, A., and J. Lehmann. 2012. Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Communications in Soil Science and Plant Analysis 43 (7):1042–52. doi: 10.1080/00103624.2012.656167.
  • Fayad, J. A., P. C. R. Fontes, A. A. Cardoso, F. L. Finger, and F. A. Ferreira. 2002. Nutrient absorption by tomato plants grown under field and protected conditions [in Portuguese]. Horticultura Brasileira 20 (1):90–4. doi: 10.1590/S0102-05362002000100017.
  • Fayez, K. A., and S. A. Bazaid. 2014. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. Journal of the Saudi Society of Agricultural Sciences 13 (1):45–55. doi: 10.1016/j.jssas.2013.01.001.
  • Ferreira, S. M. R., D. A. D. Quadros, E. N. L. Karkle, J. J. D. Lima, L. T. Tullio, and R. J. Freitas. 2010. Postharvest quality of conventional and organic tomatoes [in Portuguese]. Ciência e Tecnologia de Alimentos 30 (4):858–69. doi: 10.1590/S0101-20612010000400004.
  • Fonseca, A. A., D. A. Santos, R. R. Passos, F. V. Andrade, and O. J. P. Rangel. 2020. Phosphorus availability and grass growth in biochar‐modified acid soil: A study excluding the effects of soil pH. Soil Use and Management 36 (4):714–25. doi: 10.1111/sum.12609.
  • Food and Agriculture Organization of the United Nations (FAOSTAT). 2019. Available in: <http://www.fao.org/faostat/en/#home>. access in: 22 February 2022.
  • Foster, E. J., N. Hansen, M. Wallenstein, and M. F. Cotrufo. 2016. Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agric. Ecosyst. Environ. Appl. Soil Ecol 233:404–14. doi: 10.1016/j.agee.2016.09.029.
  • Gao, Q., T. Xiong, X. Li, W. Chen, and X. Zhu. 2019. Calcium and calcium sensors in fruit development and ripening. Scientia Horticulturae 253:412–21. doi: 10.1016/j.scienta.2019.04.069.
  • Ghannem, A., I. Ben Aissa, and R. Majdoub. 2021. Effects of regulated deficit irrigation applied at different growth stages of greenhouse grown tomato on substrate moisture, yield, fruit quality, and physiological traits. Environmental Science and Pollution Research International 28 (34):46553–64. doi: 10.1007/s11356-020-10407-w.
  • Gimeno, V., L. Díaz-López, S. Simón-Grao, V. Martínez, J. J. Martínez-Nicolás, and F. García-Sánchez. 2014. Foliar potassium nitrate application improves the tolerance of Citrus macrophylla L. seedlings to drought conditions. Plant Physiology and Biochemistry: PPB 83:308–15. doi: 10.1016/j.plaphy.2014.08.008.
  • Głąb, T., J. Palmowska, T. Zaleski, and K. Gondek. 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 281:11–20. doi: 10.1016/j.geoderma.2016.06.028.
  • Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and Fertility of Soils 35 (4):219–30. doi: 10.1007/s00374-002-0466-4.
  • Gonzaga, M. I. S., C. L. Mackowiak, N. B. Comerford, E. F. da Veiga Moline, J. P. Shirley, and D. V. Guimaraes. 2017. Pyrolysis methods impact biosolids-derived biochar composition, maize growth and nutrition. Soil and Tillage Research 165:59–65. doi: 10.1016/j.still.2016.07.009.
  • Graber, E. R., L. Tsechansky, Z. Gerstl, and B. Lew. 2012. High surface area biochar negatively impacts herbicide efficacy. Plant and Soil 353 (1-2):95–106. doi: 10.1007/s11104-011-1012-7.
  • Guo, L., M. L. Bornø, W. Niu, and F. Liu. 2021. Biochar amendment improves shoot biomass of tomato seedlings and sustains water relations and leaf gas exchange rates under different irrigation and nitrogen regimes. Agricultural Water Management. 245:106580. doi: 10.1016/j.agwat.2020.106580.
  • Gutiérrez-Boem, F. H., and G. W. Thomas. 1998. Phosphorus nutrition and water deficits in field-grown soybeans. Plant and Soil 207 (1):87–96. doi: 10.1023/A:1004469403667.
  • Hafez, Y., K. Attia, S. Alamery, A. Ghazy, A. Al-Doss, E. Ibrahim, E. Rashwan, L. El-Maghraby, A. Awad, and K. Abdelaal. 2020. Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy 10 (5):630. doi: 10.3390/agronomy10050630.
  • Hasanuzzaman, M., B. M. H. M. Borhannuddin, F. Zulfiqar, A. Raza, S. M. Mohsin, J. A. Mahmud, M. Fujita, and V. Fotopoulos. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants (Basel, Switzerland)9 (8):681. doi: 10.3390/antiox9080681.
  • Heber, U., and D. Walker. 1992. Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiology 100 (4):1621–6. doi: 10.1104/pp.100.4.1621.
  • Jatav, K. S., R. M. Agarwal, N. S. Tomar, and S. R. Tyagi. 2014. Nitrogen metabolism, growth and yield responses of wheat (Triticum aestivum L.) to restricted water supply and varying potassium treatments. J Indian Bot Soc 93 (3&4):177–89.
  • Jifon, J. L., and G. E. Lester. 2009. Foliar potassium fertilization improves fruit quality of field‐grown muskmelon on calcareous soils in south Texas. Journal of the Science of Food and Agriculture 89 (14):2452–60. doi: 10.1002/jsfa.3745.
  • Kanai, S., R. E. Moghaieb, H. A. El-Shemy, R. Panigrahi, P. K. Mohapatra, J. Ito, N. T. Nguyen, H. Saneoka, and K. Fujita. 2011. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Science: An International Journal of Experimental Plant Biology 180 (2):368–74. doi: 10.1016/j.plantsci.2010.10.011.
  • Kanazawa, A., and D. M. Kramer. 2002. In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proceedings of the National Academy of Sciences of the United States of America 99 (20):12789–94. doi: 10.1073/pnas.182427499.
  • Khan, Z., M. N. Khan, K. Zhang, T. Luo, K. Zhu, and L. Hu. 2021. The application of biochar alleviated the adverse effects of drought on the growth, physiology, yield and quality of rapeseed through regulation of soil status and nutrients availability. Industrial Crops and Products 171:113878. doi: 10.1016/j.indcrop.2021.113878.
  • Kiggundu, N., and J. Sittamukyoto. 2019. Pryloysis of coffee husks for biochar production. Journal of Environmental Protection 10 (12):1553–64. doi: 10.4236/jep.2019.1012092.
  • Klunklin, W., and G. Savage. 2017. Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods (Basel, Switzerland)6 (8):56. doi: 10.3390/foods6080056.
  • Knee, M. 2002. Fruit quality and its biological basis. 279. Sheffield: Sheffield Academic Press.
  • Kris-Etherton, P. M., K. D. Hecker, A. Bonanome, S. M. Coval, A. E. Binkoski, K. F. Hilpert, E. Griel, and T. D. Etherton. 2002. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. The American Journal of Medicine 113 Suppl 9B (9):71S–88S. doi: 10.1016/s0002-9343(01)00995-0.
  • Krounbi, L., A. Enders, J. Gaunt, M. Ball, and J. Lehmann. 2021. Plant uptake of nitrogen adsorbed to biochars made from dairy manure. Scientific Reports 11 (1):15001. doi: 10.1038/s41598-021-94337-8.
  • Kuhlgert, S., G. Austic, R. Zegarac, I. Osei-Bonsu, D. Hoh, M. I. Chilvers, M. G. Roth, K. Bi, D. TerAvest, and P. Weebadde. 2016. MultispeQ Beta: A tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science 3 (10):160592. doi: 10.1098/rsos.160592.
  • Kunrath, T. R., G. Lemaire, V. O. Sadras, and F. Gastal. 2018. Water use efficiency in perennial forage species: Interactions between nitrogen nutrition and water deficit. Field Crops Research 222:1–11. doi: 10.1016/j.fcr.2018.02.031.
  • Laird, D. A., P. Fleming, D. D. Davis, R. Horton, B. Wang, and D. L. Karlen. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158 (3-4):443–9. doi: 10.1016/j.geoderma.2010.05.013.
  • Lehmann, J., and J. Stephen. 2015. Biochar for Environmental Management: Science, Technology and Implementation, 2 ed. London: Routledge,
  • Lester, G. E., J. L. Jifon, and D. J. Makus. 2006. Supplemental foliar potassium applications with or without a surfactant can enhance netted muskmelon quality. HortScience 41 (3):741–4. doi: 10.21273/HORTSCI.41.3.741.
  • Liu, X., Y. Zhang, Z. Li, R. Feng, and Y. Zhang. 2014. Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresource Technology 170:76–82. doi: 10.1016/j.biortech.2014.07.077.
  • Lu, J., G. Shao, J. Cui, X. Wang, and L. Keabetswe. 2019. Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis. Agricultural Water Management 222:301–12. doi: 10.1016/j.agwat.2019.06.008.
  • Lustosa Filho, J. F., Penido, E. S., Castro, P. P., Silva, C. A., and Melo L. C. A. 2017. Co-pyrolysis of poultry litter and phosphate and magnesium generates alternative slow-release fertilizer suitable for tropical soils. ACS Sustainable Chemistry & Engineering 5 (10):9043–52. doi: 10.1021/acssuschemeng.7b01935.
  • Medrano, H., J. M. Escalona, J. Bota, J. Gulías, and J. Flexas. 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal conductance as a reference parameter. Annals of Botany 89 Spec No (7):895–905. doi: 10.1093/aob/mcf079.
  • Medyouni, I., R. Zouaoui, E. Rubio, S. Serino, H. B. Ahmed, and N. Bertin. 2021. Effects of water deficit on leaves and fruit quality during the development period in tomato plant. Food Science & Nutrition 9 (4):1949–60. doi: 10.1002/fsn3.2160.
  • Melo, L. C. A., J. Lehmann, J. S. Carneiro, and M. Camps-Arbestain. 2022. Biochar-based fertilizer effects on crop productivity: A meta-analysis. Plant and Soil 472 (1-2):45–58. doi: 10.1007/s11104-021-05276-2.
  • Murtaza, G., Z. Ahmed, M. Usman, W. Tariq, Z. Ullah, M. Shareef, H. Iqbal, M. Waqas, A. Tariq, and Y. Wu. 2021. Biochar induced modifications in soil properties and its impacts on crop growth and production. Journal of Plant Nutrition 44 (11):1–15. doi: 10.1080/01904167.2021.1871746.
  • Novais, R. F., J. C. L. Neves, and N. F. Barros. 1991. Controlled environment test [in Portuguese]. In Soil fertility research methods [in Portuguese], eds. A. J. de Oliveira, W. E. Garrido, J. D. de Araújo, S. Lourenço, (coord.). Chapter 2, 189–98. Brasília: EMBRAPA.
  • Oddo, E., S. Inzerillo, F. L. Bella, F. Grisafi, S. Salleo, and A. Nardini. 2012. Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiology 31 (2):131–8. doi: 10.1093/treephys/tpq115.
  • Pandit, N. R., J. Mulder, S. E. Hale, V. Martinsen, H. P. Schmidt, and G. Cornelissen. 2018. Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. The Science of the Total Environment 625:1380–9. doi: 10.1016/j.scitotenv.2018.01.022.
  • Peng, J., X. Han, N. Li, K. Chen, J. Yang, X. Zhan, P. Luo, and N. Liu. 2021. Combined application of biochar with fertilizer promotes nitrogen uptake in maize by increasing nitrogen retention in soil. Biochar 3 (3):367–79. doi: 10.1007/s42773-021-00090-6.
  • Peng, H., Q. Liu, X. Rong, Y. Zhang, C. Tian, and Y. Xie. 2015. Effects of biochar, organic fertilizer and chemical fertilizer combined application on nutrient utilization and yield of spring maize. Journal of Southern Agriculture 46 (8):1396–400.
  • Petrović, I., S. Savić, Z. Jovanović, R. Stikić, B. Brunel, S. Sérino, and N. Bertin. 2019. Fruit quality of cherry and large fruited tomato genotypes as influenced by water deficit. Zemdirbyste-Agriculture 106 (2):123–8. doi: 10.13080/z-a.2019.106.016.
  • Puga, A. P., P. Grutzmacher, C. E. P. Cerri, V. S. Ribeirinho, and C. A. de Andrade. 2020. Biochar-based nitrogen fertilizers: Greenhouse gas emissions, use efficiency, and maize yield in tropical soils. The Science of the Total Environment 704:135375. doi: 10.1016/j.scitotenv.2019.135375.
  • Rabbi, M. F., T. Ben Hassen, H. El Bilali, D. Raheem, and A. Raposo. 2023. Food security challenges in Europe in the context of the prolonged Russian–Ukrainian conflict. Sustainability 15 (6):4745. doi: 10.3390/su15064745.
  • Rajkovich, S., A. Enders, K. Hanley, C. Hyland, A. R. Zimmerman, and J. Lehmann. 2012. Crescimento do milho e nutrição de nitrogênio após adições de biochars com propriedades variáveis para um solo temperado. Biology and Fertility of Soils 48 (3):271–84. doi: 10.1007/s00374-011-0624-7.
  • Ran, C., A. Gulaqa, J. Zhu, X. Wang, S. Zhang, Y. Geng, L. Guo, F. Jin, and X. Shao. 2019. Benefits of biochar for improving ion contents, cell membrane permeability, leaf water status and yield of rice under saline–sodic paddy field condition. Journal of Plant Growth Regulation 39 (1):370–7. doi: 10.1007/s00344-019-09988-9.
  • Rasheed, F., E. Dreyer, B. Richard, F. Brignolas, O. Brendel, and D. Le Thiec. 2015. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: An example from Populus nigra L. Plant, Cell & Environment 38 (4):670–84. doi: 10.1111/pce.12423.
  • Rasheed, F., A. Gondal, K. A. Kudus, Z. Zafar, M. F. Nawaz, W. R. Khan, M. Abdullah, F. H. Ibrahim, C. Depardieu, A. M. M. Pazi, et al. 2021. Effects of soil water deficit on three tree species of the arid environment: Variations in growth, physiology, and antioxidant enzyme activities. Sustainability 13 (6):3336. doi: 10.3390/su13063336.
  • Rashid, M., Q. Hussain, K. S. Khan, M. I. Al-Wabel, Z. Afeng, M. Akmal, … M. F. Qayyum, et al. 2020. Prospects of biochar in alkaline soils to mitigate climate change. In Environment, climate, plant and vegetation growth. Springer, Cham. doi: 10.1007/978-3-030-49732-3_7.
  • Razzaghi, F., P. B. Obour, and E. Arthur. 2020. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 361:114055. doi: 10.1016/j.geoderma.2019.114055.
  • Rees, D., G. Farrell, and J. Orchard. 2012. Crop post-harvest. Oxford, UK: Science and Technology Perishables, Wiley-Blackwell.
  • Rodriguez, J. A., J. F. Lustosa Filho, L. C. A. Melo, I. R. de Assis, and T. S. de Oliveira. 2021. Co-pyrolysis of agricultural and industrial wastes changes the composition and stability of biochars and can improve their agricultural and environmental benefits. Journal of Analytical and Applied Pyrolysis 155:105036. doi: 10.1016/j.jaap.2021.105036.
  • Rodriguez-Amaya, D. B. 2001. A guide to carotenoid analysis in foods. vol. 71. Washington: ILSI press.
  • Sani, M. N. H., M. Hasan, J. Uddain, and S. Subramaniam. 2020. Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced NPK fertilization. Annals of Agricultural Sciences 65 (1):107–15. doi: 10.1016/j.aoas.2020.06.003.
  • Scholander, P. F., E. D. Bradstreet, E. A. Hemmingsen, and H. T. Hammel. 1965. Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science (New York, N.Y.)148 (3668):339–46. doi: 10.1126/science.148.3668.339.
  • Seki, K. 2007. SWRC fit–a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure. Hydrology and Earth System Sciences Discussions 4 (1):407–37.
  • Shafiq, F., H. Batool, S. H. Raza, and M. Hameed. 2015. Effect of potassium nitrate seed priming on allometry of drought-stressed cotton (Gossypium hirsutum L.). J. Crop Sci. Biotech 8:195–204. doi: 10.1007/s12892-015-0035-7.
  • Shehzad, M. A., F. Nawaz, F. Ahmad, N. Ahmad, and S. Masood. 2020. Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. Ecotoxicology and Environmental Safety 187:109841. doi: 10.1016/j.ecoenv.2019.109841.
  • Shrestha, A. J., and B. H. Pandit. 2017. Action research into a flood resilient value chain–biochar-based organic fertilizer doubles productivity of pea in Udayapur, Nepal. KnE Life Sciences 3 (5):1–19. doi: 10.18502/kls.v3i5.974.
  • Singh, M., R. K. Saini, S. Singh, and S. P. Sharma. 2019. Potential of integrating biochar and deficit irrigation strategies for sustaining vegetable production in water-limited regions: A review. HortScience 54 (11):1872–8. doi: 10.21273/HORTSCI14271-19.
  • Singh, K. M., and H. K. Singh. 2020. Effect of foliar application of potassium nitrate on late sown wheat (Triticum aestivum L.) in mitigating terminal heat stress. J Pharmacogn Phytochem 9:492–5.
  • Streubel, J., H. Collins, M. Garcia-Perez, J. Tarara, D. Granatstein, and C. Kruger. 2011. Influence of contrasting biochar types on five soils at increasing rates of application. Soil Science Society of America Journal 75 (4):1402–13. doi: 10.2136/sssaj2010.0325.
  • Suliman, W., J. B. Harsh, N. I. Abu-Lail, A. M. Fortuna, I. Dallmeyer, and M. Garcia-Pérez. 2017. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. The Science of the Total Environment 574:139–47. doi: 10.1016/j.scitotenv.2016.09.025.
  • Suzuki, K., M. Shono, and Y. Egawa. 2003. Localization of calcium in the pericarp cells of tomato fruits during the development of blossom-end rot. Protoplasma 222 (3-4):149–56. doi: 10.1007/s00709-003-0018-2.
  • Taherymoosavi, S., V. Verheyen, P. Munroe, S. Joseph, and A. Reynolds. 2017. Characterization of organic compounds in biochars derived from municipal solid waste. Waste Management (New York, N.Y.)67:131–42. doi: 10.1016/j.wasman.2017.05.052.
  • Teixeira, P. C., G. K. Donagemma, A. Fontana, and W. G. Teixeira. 2017. Manual of soil analysis methods [in Portuguese]. 573. Brasília: Embrapa
  • Uzoma, K. C., M. Inoue, H. Andry, H. Fujimaki, A. Zahoor, and E. Nishihara. 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management 27 (2):205–12. doi: 10.1111/j.1475-2743.2011.00340.x.
  • Van Breemen, R. B., and N. Pajkovic. 2008. T multitargeted therapy of cancer by lycopene. Cancer Letters 269 (2):339–51. doi: 10.1016/j.canlet.2008.05.016.
  • Van Genuchten, M. T. 1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44 (5):892–8. doi: 10.2136/sssaj1980.03615995004400050002x.
  • Villagra-Mendoza, K., and R. Horn. 2018. Effect of biochar addition on hydraulic functions of two textural soils. Geoderma 326:88–95. doi: 10.1016/j.geoderma.2018.03.021.
  • Yeomans, J. C., and J. M. Bremner. 1998. A rapid and precise method for routine determination of carbon in soil. Communications in Soil Science and Plant Analysis 19 (13):1467–76. doi: 10.1080/00103628809368027.
  • Zhang, D., M. Yan, Y. Niu, X. Liu, L. Van Zwieten, D. Chen, R. Bian, K. Cheng, L. Li, S. Joseph, et al. 2016. Is current biochar research addressing global soil constraints for sustainable agriculture. Agriculture Ecosystems and Environment. 226:25–32. doi: 10.1016/j.agee.2016.04.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.