31
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Changes in growth, essential oil composition and biochemical traits of peppermint in response to coapplication of zinc and methyl jasmonate in soilless culture

, , &
Received 05 Feb 2024, Accepted 04 Jun 2024, Published online: 20 Jun 2024

References

  • Abbasi Khammar, A. A., M. Moghaddam, A. Asgharzade, and M. M. Sourestani. 2021. Nutritive composition, growth, biochemical traits, essential oil content and compositions of Salvia officinalis L. grown in different nitrogen levels in soilless culture. Journal of Soil Science and Plant Nutrition 21 (4):3320–32. doi: 10.1007/s42729-021-00608-8.
  • Abbasifar, A., F. Shahrabadi, and B. ValizadehKaji. 2020. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. Journal of Plant Nutrition 43 (8):1104–18. doi: 10.1080/01904167.2020.1724305.
  • Adams, R. P. 2007. Identification of essential oil components by gas chromatography/mass spectroscopy. Carol Stream, Illinois, USA: Allured Publishing Corporation.
  • Afsahi, K., M. Nazari, H. Omidi, F. Shekari, and A. A. Bostani. 2020. The effects of different methods of zinc application on canola seed yield and oil content. Journal of Plant Nutrition 43 (8):1070–9. doi: 10.1080/01904167.2020.1724299.
  • Ahmed, A. M. A., F. A. El-Kady, and A. K. Khalid. 2018. Morphological and chemical characters of Petroselinum crispum (Mill) subjected to some biostimulants. Asian Journal of Plant Sciences 17 (2):96–106. doi: 10.3923/ajps.2018.96.106.
  • Alara, O. R., N. H. Abdurahman, and C. I. Ukaegbu. 2021. Extraction of phenolic compounds: A review. Current Research in Food Science 4:200–14. doi: 10.1016/j.crfs.2021.03.011.
  • Alavi-Samani, S. M., M. A. Kachouei, and A. G. Pirbalouti. 2015. Growth, yield, chemical composition, and antioxidant activity of essential oils from two thyme species under foliar application of jasmonic acid and water deficit conditions. Horticulture, Environment, and Biotechnology 56 (4):411–20. doi: 10.1007/s13580-015-0117-y.
  • Ali, B. 2021. Practical applications of jasmonates in the biosynthesis and accumulation of secondary metabolites in plants. Biocatalysis and Agricultural Biotechnology 38:102205–15. doi: 10.1016/j.bcab.2021.102205.
  • Alvarenga, I. C. A., P. F. Boldrin, F. V. Pacheco, S. T. Silva, S. K. V. Bertolucci, and J. E. B. P. Pinto. 2015. Effects on growth, essential oil content and composition of the volatile fraction of Achillea millefolium L. cultivated in hydroponic systems deficient in macro and microelements. Scientia Horticulturae 197:329–38. doi: 10.1016/j.scienta.2015.09.046.
  • Amani Machiani, M., A. Javanmard, M. R. Morshedloo, and F. Maggi. 2018. Evaluation of competition, essential oil quality and quantity of peppermint intercropped with soybean. Industrial Crops and Products 111:743–54. doi: 10.1016/j.indcrop.2017.11.052.
  • Babaei, K., R. S. Sharifi, A. Pirzad, and R. Khalilzadeh. 2017. Effects of bio fertilizer and nano zn-fe oxide on physiological traits, antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress. Journal of Plant Interactions 12 (1):381–9. doi: 10.1080/17429145.2017.1371798.
  • Babenko, L. M., O. E. Smirnov, K. O. Romanenko, O. K. Trunova, and I. V. Kosakіvskа. 2019. Phenolic compounds in plants: Biogenesis and functions. The Ukrainian Biochemical Journal 91 (3):5–18. doi: 10.15407/ubj91.03.005.
  • Baghaie, A. H., and A. Aghilizefree. 2020. Effect of zinc sulfate and salicylic acid on biological degradation of phenanthrene in the Cd polluted soil under sorghum cultivation inoculated with Pseudomonas putida. Journal of Chemical Health Risks 10 (1):35–43. doi: 10.22034/jchr.2020.1881868.1059.
  • Barrameda-Medina, Y., B. Blasco, M. Lentini, S. Esposito, N. Baenas, D. A. Moreno, and J. M. Ruiz. 2017. Zinc biofortification improves phytochemicals and amino-acidic profile in Brassica oleracea cv. Bronco. Plant Science: An International Journal of Experimental Plant Biology 258:45–51. doi: 10.1016/j.plantsci.2017.02.004.
  • Behera, S. K., A. K. Shukla, P. Singh, V. Trivedi, A. K. Patra, A. S. Rao, and A. K. Singh. 2021. Zinc application enhances yield and alters micronutrients concentration in pigeonpea (Cajanus cajan L. Millsp.). Nutrient Cycling in Agroecosystems 119 (3):423–43. doi: 10.1007/s10705-021-10133-w.
  • Bhatla, S. C. 2018. Jasmonic acid. In Plant physiology, development and metabolism, eds. S. C. Bhatla, and M. A. Lal, 671–9. Singapore: Springer Nature. doi: 10.1007/978-981-13-2023-1.
  • British Pharmacopoeia Commission. 1980. HM Stationery Office. Vol II. London: https://www.pharmacopoeia.com
  • Butnariu, M., and I. Sarac. 2018. Essential oils from plants. Journal of Biotechnology and Biomedical Science 1 (4):35–43. doi: 10.1302/issn.2576-6694.jbbs-18-2489.
  • Cappellari, L. D. R., M. V. Santoro, A. Schmidt, J. Gershenzon, and E. Banchio. 2019. Induction of essential oil production in Mentha × piperita by plant growth promoting bacteria was correlated with an increase in jasmonate and salicylate levels and a higher density of glandular trichomes. Plant Physiology and Biochemistry: PPB 141:142–53. doi: 10.1016/j.plaphy.2019.05.030.
  • Cappellari, L. D. R., M. V. Santoro, A. Schmidt, J. Gershenzon, and E. Banchio. 2020. Improving phenolic total content and monoterpene in Mentha × piperita by using salicylic acid or methyl jasmonate combined with rhizobacteria inoculation. International Journal of Molecular Sciences 21 (1):50–60. doi: 10.3390/ijms21010050.
  • Castillo-Gonzalez, J., D. Ojeda-Barrios, A. Hernandez-Rodriguez, J. Abadia, E. Sanchez, R. Parra-Quezada, M. C. Valles-Aragon, and J. A. Pedro Sida-Arreola. 2019. Zinc nutritional status of pecan trees influences physiological and nutritional indicators, the metabolism of oxidative stress, and yield and fruit quality. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47 (2):531–45. doi: 10.15835/nbha4711389.
  • Chrysargyris, A., E. Nikolaidou, A. Stamatakis, and N. Tzortzakis. 2017. Vegetative, physiological, nutritional and antioxidant behavior of spearmint (Mentha spicata L.) in response to different nitrogen supply in hydroponics. Journal of Applied Research on Medicinal and Aromatic Plants 6:52–61. doi: 10.1016/j.jarmap.2017.01.006.
  • Dai, H., S. Wei, M. Pogrzeba, S. Rusinowski, J. Krzyżak, and G. Jia. 2020. Exogenous jasmonic acid decreased Cu accumulation by alfalfa and improved its photosynthetic pigments and antioxidant system. Ecotoxicology and Environmental Safety 190:110176–90. doi: 10.1016/j.ecoenv.2020.110176.
  • Derakhshani, Z., A. Hassani, M. H. R. Sadaghiani, M. B. Hassanpouraghdam, H. Khalifani, and M. Dalkani. 2011. Effect of zinc application on growth and some biochemical characteristics of costmary (Chrysanthemum balsamita). Communications in Soil Science and Plant Analysis 42 (20):2493–503. doi: 10.1080/00103624.2011.609257.
  • Fan, Y., T. Jiang, Z. Chun, G. Wang, K. Yang, X. Tan, J. Zhao, S. Pu, and A. Luo. 2021. Zinc affects the physiology and medicinal components of Dendrobium nobile Lindl. Plant Physiology and Biochemistry: PPB 162:656–66. doi: 10.1016/j.plaphy.2021.03.040.
  • Ghasemi Pirbalouti, A. G., M. Nekoei, M. Rahimmalek, and F. Malekpoor. 2019. Chemical composition and yield of essential oil from lemon balm (Melissa officinalis L.) under foliar applications of jasmonic and salicylic acids. Biocatalysis and Agricultural Biotechnology 19:101144–55. doi: 10.1016/j.bcab.2019.101144.
  • Ghasemi Pirbalouti, A., M. Rahimmalek, L. Elikaei-Nejhad, and B. Hamedi. 2014. Essential oil compositions of summer savory under foliar application of jasmonic acid and salicylic acid. Journal of Essential Oil Research 26 (5):342–7. doi: 10.1080/10412905.2014.922508.
  • Gülçin, I. 2020. Antioxidants and antioxidant methods: An updated overview. Archive of Toxicology 94:651–715. doi: 10.1007/s00204-020-02689-3.
  • Gupta, A. K., R. Mishra, A. K. Singh, A. Srivastava, and R. K. Lal. 2017. Genetic variability and correlations of essential oil yield with agro-economic traits in Mentha species and identification of promising cultivars. Industrial Crops and Products 95:726–32. doi: 10.1016/j.indcrop.2016.11.041.
  • Hamidian, M., M. Movahhedi-Dehnavi, R. Z. Sayyed, W. H. Almalki, A. Gafur, and B. Fazeli-Nasab. 2023. Co-inoculation of Mycorrhiza and methyl jasmonate regulates morpho-physiological and antioxidant responses of Crocus sativus (Saffron) under salinity stress conditions. Scientific Reports 13 (1):7378–85. doi: 10.1038/s41598-023-34359-6.
  • Hanaka, A., A. Nowak, E. Ozimek, S. Dresler, A. Plak, A. Sujak, E. Reszczyńska, and M. Strzemski. 2022. Effect of copper stress on Phaseolus coccineus in the presence of exogenous methyl jasmonate and/or Serratia plymuthica from the Spitsbergen soil. Journal of Hazardous Materials 436:129232–50. doi: 10.1016/j.jhazmat.2022.129232.
  • Hanif, M. A., H. Nawaz, M. A. Ayub, N. Tabassum, N. Kanwal, N. Rashid, M. Saleem, and M. Ahmad. 2017. Evaluation of the effects of Zinc on the chemical composition and biological activity of basil essential oil by using Raman spectroscopy. Industrial Crops and Products 96:91–101. doi: 10.1016/j.indcrop.2016.10.058.
  • He, F., L. Mu, G.-L. Yan, N.-N. Liang, Q.-H. Pan, J. Wang, M. J. Reeves, and C.-Q. Duan. 2010. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules (Basel, Switzerland)15 (12):9057–91. doi: 10.3390/molecules15129057.
  • Hegazy, M. H., F. M. Alzuaibr, A. A. Mahmoud, H. F. Mohamed, and H. A. Said-Al Ahl. 2016. The effects of zinc application and cutting on growth, herb, essential oil and flavonoids in three medicinal Lamiaceae plants. European Journal of Medicinal Plants 12 (3):1–12. doi: 10.9734/EJMP/2016/23589.
  • Hoagland, D. R., and D. I. Arnon. 1950. The water-culture method for growing plants without soil. Berkeley, CA, USA: College of Agriculture, University of California.
  • Jahani, F., H. R. Tohidi-Moghadam, H. R. Larijani, F. Ghooshchi, and M. Oveysi. 2021. Influence of zinc and salicylic acid foliar application on total chlorophyll, phenolic components, yield and essential oil composition of peppermint (Mentha piperita L.) under drought stress condition. Arabian Journal of Geosciences 14 (8):1–12. doi: 10.1007/s12517-021-07024-3.
  • Javadipour, Z., H. Balouchi, M. M. Dehnavi, and A. Yadavi. 2019. Roles of methyl jasmonate in improving growth and yield of two varieties of bread wheat (Triticum aestivum) under different irrigation regimes. Agricultural Water Management 222:336–45. doi: 10.1016/j.agwat.2019.06.011.
  • Jeyasri, R., P. Muthuramalingam, K. Karthick, H. Shin, S. H. Choi, and M. Ramesh. 2023. Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: An updated review. Plant Cell, Tissue and Organ Culture 153 (3):447–58. doi: 10.1007/s11240-023-02485-8.
  • Kamali, S., A. Iranbakhsh, M. Ebadi, ZO. Ardebili, and S. Haghighat. 2024. Methyl jasmonate conferred Arsenic tolerance in Thymus kotschyanus by DNA hypomethylation, stimulating terpenoid metabolism, and upregulating two cytochrome P450 monooxygenases. Journal of Hazardous Materials 465:133163–73. doi: 10.1016/j.jhazmat.2023.133163.
  • Kamatou, G. P. P., I. Vermaak, A. M. Viljoen, and B. M. Lawrence. 2013. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry 96:15–25. doi: 10.1016/j.phytochem.2013.08.005.
  • Kandoudi, W., P. Radácsi, B. Gosztola, and É. Zámboriné Németh. 2021. Elicitation of medicinal plants in vivo—Is it a realistic tool? The effect of methyl jasmonate and salicylic acid on lamiaceae species. Horticulturae 8 (1):5–19. doi: 10.3390/horticulturae8010005.
  • Kaushik, S., A. Ranjan, A. K. Singh, and G. Sirhindi. 2024. Methyl jasmonate reduces cadmium toxicity by enhancing phenol and flavonoid metabolism and activating the antioxidant defense system in pigeon pea (Cajanus cajan). Chemosphere 346:140681–91. doi: 10.1016/j.chemosphere.2023.140681.
  • Kaya, C., F. Ugurlar, M. Ashraf, A. Noureldeen, H. Darwish, and P. Ahmad. 2021. Methyljasmonate and sodium nitroprusside jointly alleviate cadmium toxicity in wheat (Triticum aestivum L.) plants by modifying nitrogen metabolism, cadmium detoxification, and AsA–GSH cycle. Frontiers in Plant Science 12 (12):654780–95. doi: 10.3389/fpls.2021.654780.
  • Keshavarz, H., S. A. M. Modarres-Sanavy, and M. Mahdipour Afra. 2018. Organic and chemical fertilizer affected yield and essential oil of two mint species. Journal of Essential Oil Bearing Plants 21 (6):1674–81. doi: 10.1080/0972060X.2018.1497545.
  • Khalid, K. A. 2015. Effect of macro and micro nutrients on essential oil of coriander fruits. Journal of Materials and Environmental Sciences 6 (8):2060–5.
  • Khalid, K. A., and M. S. Hussein. 2012. Effect of cattle and liquid manures on essential oil and antioxidant activities of celery (Apium graveolens L.) fruits. Journal of Essential Oil Bearing Plant 15 (1):97–107. doi: 10.1080/0972060X.2012.10644025.
  • Khalvandi, M., M. Amerian, H. Pirdashti, S. Keramati, and J. Hosseini. 2019. Essential oil of peppermint in symbiotic relationship with Piriformospora indica and methyl jasmonate application under saline condition. Industrial Crops and Products 127:195–202. doi: 10.1016/j.indcrop.2018.10.072.
  • Khanam, D., and F. Mohammad. 2017. Effect of structurally different plant growth regulators (PGRs) on the concentration, yield, and constituents of peppermint essential oil. Journal of Herbs, Spices, Medicinal Plants 23 (1):26–35. doi: 10.1080/10496475.2016.1254700.
  • Krizek, D. T., S. J. Britz, and R. M. Mirecki. 1998. Inhibitory effects of ambient levels of solar UVA and UVB radiation on growth of cv. New Red Fire lettuce. Physiologia Plantarum 103 (1):1–7. doi.: doi: 10.1034/j.1399-3054.1998.1030101.x.
  • Lange, B. M., S. S. Mahmoud, M. R. Wildung, G. W. Turner, E. M. Davis, I. Lange, R. C. Baker, R. A. Boydston, and R. B. Croteau. 2011. Improving peppermint essential oil yield and composition by metabolic engineering. Proceedings of the National Academy of Sciences of the United States of America 108 (41):16944–9. doi: 10.1073/pnas.1111558108.
  • Li, Y., S. Zhang, Q. Bao, Y. Chu, H. Sun, and Y. Huang. 2022. Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice (Oryza sativa L.). Environmental Pollution (Barking, Essex: 1987)(304): :119178–90. doi: 10.1016/j.envpol.2022.119178.
  • Loake, G. J., P. Ayyar, and S. Howat. 2017. Jasmonates. In Encyclopedia of applied plant sciences, vol. 1, 2nd ed., 430–6. Oxford: Elsevier.
  • Maggini, R., L. Tozzini, S. Pacifici, A. Raffaelli, and A. Pardossi. 2012. Growth and accumulation of caffeic acid derivatives in Echinacea angustifolia DC. var. angustifolia grown in hydroponic culture. Industrial Crops and Products 35 (1):269–73. doi: 10.1016/j.indcrop.2011.07.011.
  • Malekmohammad, K., M. Rafieian-Kopaei, S. Sardari, and R. D. Sewell. 2021. Toxicological effects of Mentha x piperita (peppermint): A review. Toxin Reviews 40 (4):445–59. doi: 10.1080/15569543.2019.1647545.
  • Manzoor, H., S. Mehwish, Bukhat, S., Rasul, M.I.A. Rehmani, S. Noreen, H.U.R. Athar, Z.U. Zafar, M. Skalicky, W. Soufan, M. Brestic, M. Habib-ur-Rahman, C.C. Ogbaga, and A. E.L. Sabagh. 2022. Methyl jasmonate alleviated the adverse effects of cadmium stress in pea (Pisum sativum L.): A Nexus of photosystem II activity and dynamics of redox balance. Frontiers in Plant science13: 860664–860680. doi: 10.3389/fpls.2022.860664.
  • Marschner, H. 2012. Mineral nutrient of higher plants. 2d ed. Academic Press Limited. Harcourt Brace and Company, Publishers, London.
  • Marzouk, N. M., H. A. Abd-Alrahman, A. M. M. EL-Tanahy, and S. H. Mahmoud. 2019. Impact of foliar spraying of nano micronutrient fertilizers on the growth, yield, physical quality, and nutritional value of two snap bean cultivars in sandy soils. Bulletin of the National Research Centre 43 (1):1–13. doi: 10.1021/ac60045a016.
  • Mc Cready, R. M., J. Guggolz, V. Silviera, and H. S. Owens. 1950. Determination of starch and amylose in vegetables. Analytical Chemistry 22 (9):1156–8. doi: 10.1021/ac60045a016.
  • McLaughlin, K. M., and D. B. Wakefield. 2005. An introduction to data analysis using Minitab® 17. Pearson, Amazon.
  • Mendoza, D., O. Cuaspud, J. P. Arias, O. Ruiz, and M. Arias. 2018. Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotechnology Reports 19: E 00273. doi: 10.1016/j.btre.2018.e00273.
  • Menichini, F., R. Tundis, M. Bonesi, M. Loizzo, F. Conforti, G. Statti, B. Decindio, P. Houghton, and F. Menichini. 2009. The influence of fruit ripening on the phytochemicalcontent and biological activity of Capsicum chinense Jacq. cv Habanero. Food Chemistry 114 (2):553–60. doi: 10.1016/j.foodchem.2008.09.086.
  • Miladinova-Georgieva, K., M. Geneva, I. Stancheva, M. Petrova, M. Sichanova, and E. Kirova. 2022. Effects of different elicitors on micropropagation, biomass and secondary metabolite production of stevia rebaudiana bertoni: A review. Plants 12 (1):153–70. doi: 10.3390/plants12010153.
  • Mohammadi, M., N. M. Hosseini, and M. Dashtaki. 2016. Effects of nanoferric oxide and zinc sulfate on chlorophyll, anthocyanin, flavonoid and leaf mineral elements of peppermint (Mentha piperita L.) at Karaj climatic conditions. Iranian Medicinal and Aromatic Plant 32 (5):770–82. doi: 10.22092/ijmapr.2016.107994.
  • Moreira, X., R. Zas, and L. Sampedro. 2012. Methyl jasmonate as chemical elicitor of induced responses and anti-herbivory resistance in young coniferous trees. In Plant defense: biological control, eds. J. M. Mérillon and K.G. Ramawat, 345–62. Dordrecht, The Netherlands: Springer. doi: 10.1007/978-94-007-1933-0_15.
  • Popova, M., V. Bankova, D. Butovska, V. Petkov, B. Nikolova‐Damyanova, A. G. Sabatini, G. L. Marcazzan, and S. Bogdanov. 2004. Validated methods for the quantification of biologically active constituents of poplar‐type propolis. Phytochemical Analysis: PCA 15 (4):235–40. doi: 10.1002/pca.777.
  • Raza, A., S. Charagh, Z. Zahid, M. S. Mubarik, R. Javed, M. H. Siddiqui, and M. Hasanuzzaman. 2020. Jasmonic acid: A key frontier in conferring abiotic stress tolerance in plants. Plant Cell Reports 40 (8):1513–41. doi: 10.1007/s00299-020-02614-z.
  • Rita, I., C. Pereira, L. Barros, C. Santos-Buelga, and I. C. F. R. Ferreira. 2016. Mentha spicata L. infusions as sources of antioxidant phenolic compounds: Emerging reserve lots with special harvest requirements. Food & Function 7 (10):4188–92. doi: 10.1039/c6fo00841k.
  • Safari, F., M. Akramian, H. Salehi-Arjmand, and A. Khadivi. 2019. Physiological and molecular mechanisms underlying salicylic acid-mitigated mercury toxicity in lemon balm (Melissa officinalis L.). Ecotoxicology and Environmental Safety 183:109542–50. doi: 10.1016/j.ecoenv.2019.109542.
  • Salachna, P., Ł. Łopusiewicz, R. Dymek, A. Matzen, and K. Trochanowicz. 2020. Foliar application of gibberellic acid and methyl jasmonate improves leaf greenness in Hesperantha coccinea (syn. Schizostylis coccinea), a rare ornamental plant. In. Biology and Life Sciences Forum (Vol. 4, No. 1, p. 97). Multidisciplinary Digital Publishing Institute. doi: 10.3390/IECPS2020-08622.
  • Salem, N., K. Msaada, W. Dhifi, F. Limam, and B. Marzouk. 2014. Effect of salinity on plant growth and biological activities of Carthamus tinctorius L. extracts at two flowering stages. Acta Physiologiae Plantarum 36 (2):433–45. doi: 10.1007/s11738-013-1424-5.
  • Sarabi, V., and E. Arjmand-Ghajur. 2021. Exogenous plant growth regulators/plant growth promoting bacteria roles in mitigating water-deficit stress on chicory (Cichorium pumilum Jacq.) at a physiological level. Agricultural Water Management 245:106439–50. doi: 10.1016/j.agwat.2020.106439.
  • Sharafzadeh, S., and M. Zare. 2011. Influence of growth regulators and secondary metabolites of some medicinal plants from Lamiaceae family. Advances in Environmental Biology 5:2296–302.
  • Sidhu, M. K., H. C. Raturi, D. S. Kachwaya, and A. Sharma. 2019. Role of micronutrients in vegetable production: A review. Journal of Pharmacognosy and Phytochemistry :332–40.
  • Singleton, V. L., and J. A. Rossi. Jr.,. 1965. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture 16 (3):144–58. doi: 10.5344/ajev.1965.16.3.144.
  • Tassoni, A., L. Durante, and M. Ferri. 2012. Combined elicitation of methyl-jasmonate and red light on stilbene and anthocyanin biosynthesis. Journal of Plant Physiology 169 (8):775–81. doi: 10.1016/j.jplph.2012.01.017.
  • Tavallali, V., H. Gholami, and O. Espargham. 2020. Biological and pharmacological activities of essential oils of Ocimum basilicum L. grown with Zn-salicylic acid nanocomplex. Journal of Applied Botany and Food Quality 93:26–33. doi: 10.5073/JABFQ.2020.093.004.
  • Tewari, R. K., P. Kumar, and P. N. Sharma. 2019. An effective antioxidant defense provides protection against zinc deficiency induced oxidative stress in Zn efficient maize plants. Journal of Plant Nutrition and Soil Science 182 (5):701–7. doi: 10.1002/jpln.201800622.
  • Tungmunnithum, D., A. Thongboonyou, A. Pholboon, and A. Yangsabai. 2018. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines (Basel, Switzerland)5 (3):93–105. doi: 10.3390/medicines5030093.
  • Verma, G., D. Srivastava, S. Narayan, P. A. Shirke, and D. Chakrabarty. 2020. Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.). Ecotoxicology and Environmental Safety 201:110735. doi: 10.1016/j.ecoenv.2020.110735.
  • Wang, H., X. D. Gao, G. C. Zhou, L. Cai, and W. B. Yao. 2008. In vitro and in vivo antioxidant activity of aqueous extract from Choerospondias axillaris fruit. Food Chemistry 106 (3):888–95. doi: 10.1016/j.foodchem.2007.05.068.
  • Wang, J., P. Um, B. A. Dickerman, and J. Liu. 2018. Zinc, magnesium, selenium and depression: a review of the evidence, potential mechanisms and implications. Nutrients 10 (5):584–95. doi: 10.3390/nu10050584.
  • Wasternack, C., and M. Strnad. 2017. Jasmonates are signals in the biosynthesis of secondary metabolites - pathways, transcription factors and applied aspects: A brief review. New Biotechnology 48 (17):1–11. doi: 10.1016/j.nbt.2017.09.007.
  • Wasternack, C., and S. Song. 2016. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany 68 (6):1303–21. doi: 10.1093/jxb/erw443.
  • White, P. J., and P. H. Brown. 2010. Plant nutrition for sustainable development and global health. Annals of Botany 105 (7):1073–80. doi: 10.1093/aob/mcq085.
  • Yan, Y., E. Borrego, and M. V. Kolomiets. 2013. Jasmonate biosynthesis, perception and function in plant development and stress responses, chap 16. In Lipid metabolism, ed. R. V. Baez, 393–442. Rijeka: In Tech.
  • Yermakov, A. I., V. V. Arasimov, and N. P. Yarosh. 1987. Methods of Biochemical Analysis of Plants. Agropromizdat, Leningrad, 122–42.
  • Zaid, A., and S. H. Wani. 2019. Reactive oxygen species generation, scavenging and signaling in plant defense responses. In Bioactive molecules in plant defense: Signaling in growth and stress, 111–32. Cham: Springer International Publishing.
  • Zaid, A., F. Mohammad, and Q. Fariduddin. 2020. Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.). Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology 26 (1):25–39. doi: 10.1007/s12298-019-00715-y.
  • Zaid, A., M. Mushtaq, and S. H. Wani. 2021. Interactions of phytohormones with abiotic stress factors under changing climate. In Frontiers in plant–soil interaction, 221–36. Cambridge: Academic Press.
  • Zhao, H., S. Ren, H. Yang, S. Tang, C. Guo, M. Liu, Q. Tao, T. Ming, and H. Xu. 2022. Peppermint essential oil: Its phytochemistry, biological activity, pharmacological effect and application. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 154:113559–70. doi: 10.1016/j.biopha.2022.113559.
  • Złotek, U., M. Michalak-Majewska, and U. Szymanowska. 2016. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.). Food Chemistry 213:1–7. doi: 10.1016/j.foodchem.2016.06.052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.