13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Root growth dynamics, nutrient uptake and use efficiency of Grevillea robusta grown under nitrogen and phosphorus deficiency

, , ORCID Icon &
Received 13 Jul 2023, Accepted 21 May 2024, Published online: 20 Jun 2024

References

  • Ågren, G. I., J. Å. M. Wetterstedt, and M. F. K. Billberger. 2012. Nutrient limitation on terrestrial plant growth – modeling the interaction between nitrogen and phosphorus. The New Phytologist 194 (4):953–60. doi: 10.1111/j.1469-8137.2012.04116.x.
  • Ahmed, A. S. 2006. Phytochemical and biological study of Grevillea robusta A. Cunn cultivated in Egypt. Bulletin of Pharmaceutical Sciences Assiut 29 (2):272–88. doi: 10.21608/bfsa.2006.65200.
  • Brooker, R. W., A. E. Bennett, W.-F. Cong, T. J. Daniell, T. S. George, P. D. Hallett, C. Hawes, P. P. M. Iannetta, H. G. Jones, A. J. Karley, et al. 2015. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. The New Phytologist 206 (1):107–17. doi: 10.1111/nph.13132.
  • Chen, Z. C., and H. Liao. 2016. Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils. Journal of Genetics and Genomics = Yi Chuan Xue Bao 43 (11):631–8. doi: 10.1016/j.jgg.2016.11.003.
  • Delgado, M., S. Valle, M. Reyes-Díaz, P. J. Barra, and A. Zúñiga-Feest. 2018. Nutrient use efficiency of South America proteaceae species. Are there general patterns in the proteaceae family? Frontiers in Plant Science 9:883. doi: 10.3389/fpls.2018.00883.
  • Diem, H. G., E. Duhoux, H. Zaid, and M. Arahou. 2000. Cluster roots in casuarinaceae: Role and relationship to soil nutrient factors. Annals of Botany 85 (6):929–36. doi: 10.1006/anbo.1999.1127.
  • Dissanayaka, D. M. S. B., M. Ghahremani, M. Siebers, J. Wasaki, and W. C. Plaxton. 2021. Recent insights into the metabolic adaptations of phosphorus deprived plants. Journal of Experimental Botany 72 (2):199–223. doi: 10.1093/jxb/eraa482.
  • Dissanayaka, D. M. S. B., H. Maruyama, G. Masuda, and J. Wasaki. 2015. Interspecific facilitation of P acquisition in intercropping of maize with white lupin in two contrasting soils as influenced by different rates and forms of P supply. Plant and Soil 390 (1–2):223–36. doi: 10.1007/s11104-015-2392-x.
  • Dissanayaka, D. M. S. B., W. C. Plaxton, H. Lambers, M. Siebers, B. Marambe, and J. Wasaki. 2018. Molecular mechanisms underpinning phosphorus use efficiency in rice. Plant, Cell & Environment 41 (7):1483–96. doi: 10.1111/pce.13191.
  • Guignard, M. S., A. R. Leitch, C. Acquisti, C. Eizaguirre, J. J. Elser, D. O. Hessen, P. D. Jeyasingh, M. Neiman, A. E. Richardson, P. S. Soltis, et al. 2017. Impacts of nitrogen and phosphorus: From genomes to natural ecosystems and agriculture. Frontiers in Ecology and Evolution 5:70. doi: 10.3389/fevo.2017.00070.
  • Hayes, P. E., P. L. Clode, R. S. Oliveira, and H. Lambers. 2018. Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: An adaptation improving phosphorus use efficiency. Plant, Cell & Environment 41 (3):605–19. doi: 10.1111/pce.13124.
  • Hermans, C., J. P. Hammond, P. J. White, and N. Verbruggen. 2006. How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science 11 (12):610–7. doi: 10.1016/j.tplants.2006.10.007.
  • Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil 237 (2):173–95. doi: 10.1023/A:1013351617532.
  • Hinsinger, P., E. Betencourt, L. Bernard, A. Brauman, C. Plassard, J. Shen, X. Tang, and F. Zhang. 2011. P for two, sharing a scarce resource: Soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiology 156 (3):1078–86. doi: 10.1104/pp.111.175331.
  • Karanja, N. K., K. A. Mwendwa, and F. Zapata. 1999. Growth response of Grevillea robusta A. Cunn. seedlings to phosphorus fertilization in acid soils from Kenya. Biotechnology, Agronomy, Society and Environment 3 (1):57–64.
  • Kitson, R. E., and M. G. Mellon. 1944. Colorimetric determination of phosphorus as molybdovanado phosphoric acid. Industrial & Engineering Chemistry Analytical Edition 16 (6):379–83. doi: 10.1021/i560130a017.
  • Lambers, H. 2022. Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology 73 (1):17–42. doi: 10.1146/annurev-arplant-102720125738.
  • Lambers, H., G. R. Cawthray, P. Giavalisco, J. Kuo, E. Laliberté, S. J. Pearse, W.-R. Scheible, M. Stitt, F. Teste, and B. L. Turner. 2012. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. The New Phytologist 196 (4):1098–108. doi: 10.1111/j.1469-8137.2012.04285.x.
  • Lambers, H., P. M. Finnegan, R. Jost, W. C. Plaxton, M. W. Shane, and M. Stitt. 2015. Phosphorus nutrition in Proteaceae and beyond. Nature Plants 1 (8):15109. doi: 10.1038/nplants.2015.109.
  • Lambers, H., J. A. Raven, G. R. Shaver, and S. E. Smith. 2008. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution 23 (2):95–103. doi: 10.1016/j.tree.2007.10.008.
  • Lambers, H., M. W. Shane, M. D. Cramer, S. J. Pearse, and E. J. Veneklaas. 2006. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Annals of Botany 98 (4):693–713. doi: 10.1093/aob/mcl114.
  • Lamont, B. B. 2003. Structure, ecology and physiology of root clusters – a review. Plant and Soil 248 (1/2):1–19. doi: 10.1023/A:1022314613217.
  • Lynch, J. P. 2019. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture. The New Phytologist 223 (2):548–64. doi: 10.1111/nph.15738.
  • Maillard, A., S. Diquélou, V. Billard, P. Laîné, M. Garnica, M. Prudent, J.-M. Garcia-Mina, J.-C. Yvin, and A. Ourry. 2015. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Frontiers in Plant Science 6:317. doi: 10.3389/fpls.2015.00317.
  • Menge, D. N. L., L. O. Hedin, and S. W. Pacala. 2012. Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems. PloS One 7 (8):e42045. doi: 10.1371/journal.pone.0042045.
  • Nelson, D. W., and L. E. Sommers. 1973. Determination of total nitrogen in plant material. Agronomy Journal 65 (1):109–12. doi: 10.2134/agronj1973.00021962006500010033x.
  • Paungfoo-Lonhienne, C., P. M. Schenk, T. G. A. Lonhienne, R. Brackin, S. Meier, D. Rentsch, and S. Schmidt. 2009. Nitrogen affects cluster root formation and expression of putative peptide transporters. Journal of Experimental Botany 60 (9):2665–76. doi: 10.1093/jxb/erp111.
  • Pueyo, J. J., M. A. Quiñones, T. Coba de la Peña, E. E. Fedorova, and M. M. Lucas. 2021. Nitrogen and phosphorus interplay in lupin root nodules and cluster roots. Frontiers in Plant Science 12:644218. doi: 10.3389/fpls.2021.644218.
  • Raghothama, K. G. 1999. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology 50 (1):665–93. doi: 10.1146/annurev.arplant.50.1.665.
  • Richardson, A. E., J. P. Lynch, P. R. Ryan, E. Delhaize, F. A. Smith, S. E. Smith, P. R. Harvey, M. H. Ryan, E. J. Veneklaas, H. Lambers, et al. 2011. Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant and Soil 349 (1-2):121–56. doi: 10.1007/s11104-011-0950-4.
  • Roelofs, R. F. R., Z. Rengel, G. R. Cawthray, K. W. Dixon, and H. Lambers. 2001. Exudation of carboxylates in Australian Proteaceae: Chemical composition. Plant, Cell & Environment 24 (9):891–904. doi: 10.1046/j.1365-3040.2001.00741.x.
  • Ryan, M. H., M. Tibbett, T. Edmonds-Tibbett, L. D. B. Suriyagoda, H. Lambers, G. R. Cawthray, and J. Pang. 2012. Carbon trading for phosphorus gain: The balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant, Cell & Environment 35 (12):2170–80. doi: 10.1111/j.1365-3040.2012.02547.x.
  • Sakamoto, M., Y. Komatsu, and T. Suzuki. 2021. Nutrient deficiency affects the growth and nitrate concentration of hydroponic radish. Horticulturae 7 (12):525. doi: 10.3390/horticulturae7120525.
  • SAS Institute Inc. 2023. SAS/STAT® 15.3 User’s Guide. Cary, NC, USA: SAS Institute Inc.
  • Sas, L., Z. E. D. Rengel, and C. Tang. 2002. The effect of nitrogen nutrition on cluster root formation and proton extrusion by Lupinus albus. Annals of Botany 89 (4):435–42. doi: 10.1093/aob/mcf066.
  • Shane, M. W., and H. Lambers. 2005. Cluster roots: A curiosity in context. Plant and Soil 274 (1–2):101–25. doi: 10.007/s11104-004-2725-7.
  • Shane, M. W., K. Stigter, E. T. Fedosejevs, and W. C. Plaxton. 2014. Senescence-inducible cell wall and intracellular purple acid phosphatases: Implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae). Journal of Experimental Botany 65 (20):6097–106. doi: 10.1093/jxb/eru348.
  • Shen, Q., K. Ranathunge, H. Zhong, P. M. Finnegan, and H. Lambers. 2023. Facilitation of phosphorus acquisition by Banksia attenuata allows Adenanthos cygnorum (Proteaceae) to extend its range into severely phosphorus-impoverished habitats. Plant and Soil 496 (1–2):51–70. doi: 10.1007/s11104-023-05935-6.
  • Simpson, R. J., A. Oberson, R. A. Culvenor, M. H. Ryan, E. J. Veneklaas, H. Lambers, J. P. Lynch, P. R. Ryan, E. Delhaize, F. A. Smith, et al. 2011. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant and Soil 349 (1–2):89–120. doi: 10.1007/s11104-011-0880-1.
  • Skene, K. R., and W. M. James. 2000. A comparison of the effects of auxin on cluster root initiation and development in Grevillea robusta Cunn. ex R. Br. (Proteaceae) and in the genus Lupinus (Leguminosae). Plant and Soil 219 (1/2):221–9. doi: 10.1023/A:1004730118886.
  • Sulpice, R., H. Ishihara, A. Schlereth, G. R. Cawthray, B. Encke, P. Giavalisco, A. Ivakov, S. Arrivault, R. Jost, N. Krohn, et al. 2014. Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. Plant, Cell & Environment 37 (6):1276–98. doi: 10.1111/pce.12240.
  • Watt, M., and J. R. Evans. 1999. Proteoid roots. Physiology and development. Plant Physiology 121 (2):317–24. doi: 10.1104/pp.121.2.317.
  • Zhao, X., Y. Lyu, K. Jin, H. Lambers, and J. Shen. 2020. Leaf phosphorus concentration regulates the development of cluster roots and exudation of carboxylates in Macadamia integrifolia. Frontiers in Plant Science 11:610591. doi: 10.3389/fpls.2020.610591.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.