1
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phosphate-solubilizing rhizobacteria and their effects on the growth and phosphorus uptake by wheat plants

ORCID Icon, ORCID Icon, , , &
Received 03 Mar 2022, Accepted 21 May 2024, Published online: 18 Jun 2024

References

  • Abhinandan, K., L. Skori, M. Stanic, N. M. N. Hickerson, M. Jamshed, and M. A. Samuel. 2018. Abiotic stress signaling in wheat – an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Frontiers in Plant Science 9:734. doi: 10.3389/fpls.2018.00734.
  • Abo-Elyousr, A. M. K., M. A. A. Sallam, M. H. A. Hassan, and W. Zeller. 2010. Effect of acibenzolar-s-methyl and Rahnella aquatilis (Ra39) on chitinase and β-1, 3-glucanase activities and disease resistance of apple plants. The Plant Pathology Journal 26 (1):63–9. doi: 10.5423/PPJ.2010.26.1.063.
  • Alami, Y., W. Achouak, C. Marol, and T. Heulin. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. Strain isolated from sunflower roots. Applied and Environmental Microbiology 66 (8):3393–8. doi: 10.1128/AEM.66.8.3393-3398.2000.
  • Alikhani, H. A., N. Saleh-Rastin, and H. Antoun. 2006. Phosphate solubilizing activity of rhizobia native to Iranian soils. Plant and Soil 287 (1-2):35–41. doi: 10.1007/s11104-006-9059-6.
  • Amin, M. G. M.,A. Akter,M. M. R. Jahangir, andT. Ahmed. 2021. Leaching and runoff potential of nutrient and water losses in rice field as affected by alternate wetting and drying irrigation. Journal of Environmental Management 297:113402. doi: 10.1016/j.jenvman.2021.113402.
  • Bano, N., and J. Musarrat. 2003. Characterization of a new Pseudomonas aeruginosa strain NJ15 as a potential biocontrol agent. Current Microbiology 46 (5):324–8. doi: 10.1007/s00284-002-3857-8.
  • Barłóg, P., W. Grzebisz, and R. Łukowiak. 2022. Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants 11 (14):1855. doi: 10.1016/j.pmpp.2021.101754.
  • Barnard, A. M., N. J. Simpson, K. S. Lilley, and G. P. Salmond. 2010. Mutations in rpsL that confer streptomycin resistance show pleiotropic effects on virulence and the production of a carbapenem antibiotic in Erwinia carotovora. Microbiology 156 (Pt 4):1030–9. doi: 10.1099/mic.0.034595-0.
  • Bechtaoui, N., A. El Alaoui, A. Raklami, L. Benidire, A. I. Tahiri, and K. Oufdou. 2019b. Impact of intercropping and co-inoculation with strains of plant growth-promoting rhizobacteria on phosphorus and nitrogen concentrations and yield of durum wheat (Triticum durum) and faba bean (Vicia faba). Crop and Pasture Science 70 (8):649–58. doi: 10.1071/CP19067.
  • Bechtaoui, N., A. Raklami, A. Tahiri, L. Benidire, A. El Alaoui, A. Meddich, M. Göttfert, and K. Oufdou. 2019a. Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biology Open 8 (7):bio043968. doi: 10.1242/bio.043968.
  • Bechtaoui, N., M. K. Rabiu, A. Raklami, K. Oufdou, M. Hafidi, and M. Jemo. 2021. Phosphate-dependent regulation of growth and stresses management in plants. Frontiers in Plant Science 12:679916. doi: 10.3389/fpls.2021.679916.
  • Benidire, L., M. Lahrouni, K. Daoui, Z. Fatemi, R. Carmona, M. Göttfert, and K. Oufdou. 2018. Phenotypic and genetic diversity of Morrocan rhizobia isolated from Vicia faba L. and study of genes that are likely to be involved in their osmotolerance. Systematic and Applied Microbiology 41 (1):51–61. doi: 10.1016/j.syapm.2017.09.003.
  • Berge, O., T. Heulin, W. Achouak, C. Richard, R. Bally, and J. Balandreau. 1991. Rahnella aquatilis, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and Maize. Canadian Journal of Microbiology 37 (3):195–203. doi: 10.1139/m91-030.
  • Bolton, H., L. F. Elliott, R. F. Turco, and A. C. Kennedy. 1990. Rhizoplane colonization of pea seedlings by Rhizobium leguminosarum and a deleterious root colonizing Pseudomonas sp. and effects on plant growth. Plant and Soil 123 (1):121–4. doi: 10.1007/BF00009936.
  • Chen, F., Y. B. Guo, J. H. Wang, J. Y. Li, and H. M. Wang. 2007. Biological control of grape crown gall by Rahnella aquatilis HX2. Plant Disease 91 (8):957–63. doi: 10.1094/pdis-91-8-0957.
  • Dimkić, I., T. Janakiev, M. Petrović, G. Degrassi, and D. Fira. 2022. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms-A review. Physiological and Molecular Plant Pathology 117:101754. doi: 10.1016/j.pmpp.2021.101754.
  • Figueroa, M., K. E. Hammond-Kosack, and P. S. Solomon. 2018. A review of wheat diseases—a field perspective. Molecular Plant Pathology 19 (6):1523–36. doi: 10.1111/mpp.12618.
  • Frankenberger, J. R. W. T, and M. Arshad. 1995. Phytohormones in soils: Microbial production and function, 5–40. New York: Marcel Dekker, Inc.
  • Gao, B., X. Chai, Y. Huang, X. Wang, Z. Han, X. Xu, T. Wu, X. Zhang, and Y. Wang. 2022. Siderophore production in Pseudomonas sp. strain SP3 enhances iron acquisition in apple rootstock. Journal of Applied Microbiology 133 (2):720–32. doi: 10.1111/jam.15591.
  • Gayathri, D., and B. S. Rashmi. 2016. Critical analysis of wheat as food. Maternal and Pediatric Nutrition 02 (03):2–4. doi: 10.4172/2472-1182.1000115.
  • Hamdali, H., M. Hafidi, M. Virolle, and Y. Ouhdouch. 2008. Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P deficient soil under greenhouse conditions. Applied Soil Ecology 40 (3):510–7. doi: 10.1016/j.apsoil.2008.08.001.
  • Jha, A., J. Saxena, and V. Sharma. 2013. Investigation on phosphate solubilization potential of agricultural soil bacteria as affected by different phosphorus Sources, temperature, salt, and pH. Communications in Soil Science and Plant Analysis 44 (16):2443–58. doi: 10.1080/00103624.2013.803557.
  • Joseph, B., R. R. Patra, and R. Lawrence. 2007. Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). International Journal of Plant Production 2:141–52. doi: 10.22069/IJPP.2012.532.
  • Kandil, M. M. 2017. Characterization of Pantoea Sp. Strain MK1D, and Erwinia Sp. Strain MK2Y as Tricalcium phosphate dissolving bacteria isolated from calcareous soil. Alexandria Science Exchange Journal 38:335–42.
  • Khan, M. S., A. Zaidi, and E. Ahmad. 2014. Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Phosphate solubilizing microorganisms, ed. M. Khan, A. Zaidi, J. Musarrat, 31–62. Cham: Springer. doi: 10.1007/978-3-319-08216-5.
  • Kim, K. Y., D. Jordan, and H. B. Krishnan. 1997. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite1. FEMS Microbiology Letters 153 (2):273–7. doi: 10.1111/j.1574-6968.1997.tb12585.x.
  • Lee, V. T., J. M. Matewish, J. L. Kessler, M. Hyodo, Y. Hayakawa, and S. Lory. 2007. A cyclicdi-GMP receptor required for bacterial exopolysaccharides production. Molecular Microbiology 65 (6):1474–84. doi: 10.1111/j.1365-2958.2007.05879.x.
  • Leff, J. W., S. E. Jones, S. M. Prober, A. Barberán, E. T. Borer, J. L. Firn, W. S. Harpole, S. E. Hobbie, K. S. Hofmockel, J. M. H. Knops, et al. 2015. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America 112 (35):10967–72. doi: 10.1073/pnas.1508382112.
  • Liu, S. T., L. Y. Lee, C. Y. Tai, C. H. Hung, Y. S. Chang, J. H. Wolfram, R. Rogers, and A. H. Goldstein. 1992. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: Nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. Journal of Bacteriology 174 (18):5814–9. doi: 10.1128/jb.174.18.5814-5819.1992.
  • Lizcano-Toledo, R., M. P. Reyes-Martín, L. Celi, and E. Fernández-Ondoño. 2021. Phosphorus dynamics in the soil–plant–environment relationship in cropping systems: A review. Applied Sciences 11 (23):11133. doi: 10.3390/app112311133.
  • Ma, X., Y. Liu, W. Shen, and Y. Kuzyakov. 2021. Phosphatase activity and acidification in lupine and maize rhizosphere depend on phosphorus availability and root properties: Coupling zymography with planar optodes. Applied Soil Ecology 167:104029. doi: 10.1016/j.apsoil.2021.104029.
  • Morales-Jiménez, J., A. Vera-Ponce de León, A. García-Domínguez, E. Martínez-Romero, G. Zúñiga, and C. Hernández-Rodríguez. 2013. Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microbial Ecology 66 (1):200–10. doi: 10.1007/s00248-013-0206-3.
  • Mujahid, T. S., S. A. Subhan, A. Wahab, J. Masnoon, N. Ahmed, and T. Abbas. 2015. Effects of different physical and chemical parameters on phosphate solubilization activity of plant growth promoting bacteria isolated from indigenous soil. Journal of Pharmacy and Nutrition Sciences 5:64–70. doi: 10.6000/1927-5951.2015.05.01.10.
  • Nafis, A., A. Raklami, N. Bechtaoui, F. El Khalloufi, A. El Alaoui, B. R. Glick, M. Hafidi, L. Kouisni, Y. Ouhdouch, and L. Hassani. 2019. Actinobacteria from extreme niches in Morocco and their plant growth-promoting potentials. Diversity 11 (8):139. doi: 10.3390/d11080139.
  • Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170 (1):265–70. doi: 10.1111/j.1574-6968.1999.tb13383.x.
  • Olsen, S., and L. Sommers. 1982. Phosphorus. In Methods of soil analysis. Part 2. Chemical and microbiological properties of phosphorus, ed. A. L. Page, 403–30. Madison: American society of agronomy, soil science society of America.
  • Onyeze, R. C., G. T. Onah, and C. C. Igbonekwu. 2013. Isolation and characterization of nitrogen fixing bacteria in the soil. International Journal of Life Sciences Biotechnology and Pharma Research 2:438–45. http://www.ijlbpr.com/currentissue.php.
  • Penuelas, J., F. Coello, and J. Sardans. 2023. A better use of fertilizers is needed for global food security and environmental sustainability. Agriculture & Food Security 12 (1):1–9. doi: 10.1186/s40066-023-00409-5.
  • Prasad, M., R. Srinivasan, M. Chaudhary, M. Choudhary, and L. K. Jat. 2018. Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: Perspectives and Challenges. In PGPR amelioration in sustainable agriculture, ed. S. A. Kishore, A. Kumar, and P. S. Kumar, 129–57. Amsterdam: Elsevier. doi: 10.1016/b978-0-12-815879-1.00007-0.
  • Raklami, A., F. Quintas-Nunes, F. X. Nascimento, M. Jemo, K. Oufdou, A. Syed, A. H. Bahkali, M. Verma, and A. Nafis. 2023. Assessing the growth-promoting traits of actinobacteria spp. isolated from Cleome africana: Implications on growth and root enhancement of Medicago sativa. Journal of King Saud University – Science 35 (6):102722. doi: 10.1016/j.jksus.2023.102722.
  • Raklami, A., N. Bechtaoui, A. I. Tahiri, M. Anli, A. Meddich, and K. Oufdou. 2019. Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity, and soil fertility. Frontiers in Microbiology 10:1106. doi: 10.3389/fmicb.2019.01106.
  • Raklami, A., O. O. Babalola, M. Jemo, and A. Nafis. 2024. Unlocking the plant growth promoting potential of yeast spp.: Exploring species from the Moroccan extremophilic environment for enhanced plant growth and sustainable farming. FEMS Microbiology Letters 371: Fnae015. doi: 10.1093/femsle/fnae015.
  • Rigaud, J., and A. Puppo. 1975. Indole-3-acetic acid catabolism by soybean bacteroids. Journal of General Microbiology 88 (2):223–8. doi: 10.1099/00221287-88-2-223.
  • Rodríguez, H., and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17 (4-5):319–39. doi: 10.1016/S0734-9750(99)00014-2.
  • Sagar, A., A. Sing, N. Labhane, R. Riyazuddin, S. Marker, and P. W. Ramteke. 2020. Native bacterium Erwinia sp.(PR16) enhances growth and yield of wheat Triticum aestivum variety AAI-W6 under reduced level of NPK. International Journal of Life Sciences and Applied Sciences 2 (1):1–10.
  • Sagar, A., G. Thomas, S. Rai, R. K. Mishra, and P. W. Ramteke. 2018. Enhancement of growth and yield parameters of wheat variety AAI-W6 by an organic farm isolate of plant growth promoting Erwinia Species (KP226572). International Journal of Agriculture, Environment and Biotechnology 11 (1):159–71. doi: 10.30954/0974-1712.2018.00178.21.
  • Schwyn, B., and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160 (1):47–56. doi: 10.1016/0003-2697(87)90612-9.
  • Shahab, S., N. Ahmed, and N. S. Khan. 2009. Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. African Journal of Agricultural Research 4 (11):1312–6. http://www.academicjournals.org/AJAR.
  • Sharan A, Shikha S and Darmwal NS (2008) Efficient phosphorus solubilization by mutant strain of Xanthomonas campestris using different carbon, nitrogen and phosphorus sources.World Journal of Microbiology and Biotechnology 24:3087–90. doi: 10.1007/s11274-008-9807-2.
  • Sharma, S., V. Kumar, and R. B. Tripathi. 2011. Isolation of phosphate solubilizing microorganism (PSMs) from soil. Journal of Microbiology and Biotechnology Research 1:90–5. https://jmbronline.com/index.php/JMBR/article/view/22/22.
  • Slimani, A., A. Raklami, B. Benmrid, K. Oufdou, and A. Meddich. 2023. Salt-tolerant plant growth-promoting rhizobacteria mitigate salinity in barley by improving photosynthetic capacity, antioxidant activity, and soil fertility. Biologia 78 (12):3367–79. doi: 10.1007/s11756-023-01541-0.
  • Spiers, A., J. Bohannon, S. Gehrig, and P. B. Rainey. 2003. Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Molecular Microbiology 50 (1):15–27. doi: 10.1099/mic.0.27984-0.
  • Subedi, B., A. Poudel, and S. Aryal. 2023. The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. Journal of Agriculture and Food Research 14:100733. doi: 10.1016/j.jafr.2023.100733.
  • Tahiri, A. I., A. Raklami, B. Noura, M. Anli, A. Boutasknit, K. Oufdou, and A. Meddich. 2022. Beneficial effects of plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and compost on lettuce (Lactuca sativa) growth under field conditions. Gesunde Pflanzen 74 (1):219–35. doi: 10.1007/s10343-021-00604-z.
  • Toppo, S. R., and P. Tiwari. 2015. Phosphate solubilizing rhizospheric bacterial communities of different crops of Korea district of Chattisgarh, India. African Journal of Microbiological Research 9 (25):1629–36. doi: 10.5897/AJMR2015.7522.
  • Turan, M., M. Gulluce, and F. Şahin. 2012. Effect of plant-growth-promoting rhizobacteria on yield, growth, and some physiological characteristics of wheat and barley plants. Communications in Soil Science and Plant Analysis 43 (12):1658–73. doi: 10.1080/00103624.2012.681739.
  • Uren, N. C. 1984. Forms, reactions and availability of iron in soils. Journal of Plant Nutrition 7 (1-5):165–76. doi: 10.1080/01904168409363183.
  • Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52 (Spec Issue):487–511. doi: 10.1093/jexbot/52.suppl_1.487.
  • Yasmin, F., R. Othman, K. Sijam, and M. S. Saad. 2007. Effect of PGPR inoculation on growth and yield of sweet potato. Journal of Biological Sciences 7 (2):421–4. http://docsdrive.com/pdfs/ansinet/jbs/2007/421-424.pdf. doi: 10.3923/jbs.2007.421.424.
  • Yue, Z., Y. Chen, Y. Hao, C. Wang, Z. Zhang, C. Chen, H. Liu, Y. Liu, L. Li, and Z. Sun. 2022. Bacillus sp. WR12 alleviates iron deficiency in wheat via enhancing siderophore-and phenol-mediated iron acquisition in roots. Plant and Soil 471 (1-2):247–60. doi: 10.1007/s11104-021-05218-y.
  • Zaidi, A., M. Ahemad, M. Oves, E. Ahmad, and M. S. Khan. 2010. Role of phosphate solubilizing bacteria in legume improvement. In: Microbes for legume improvement, ed. M. S. Khan, J. Musarrat and A. Zaidi, 273–92. Vienna: Springer. doi: 10.1007/978-3-211-99753-6_11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.