19
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Integrated use of phosphorus sources, phosphate solubilizing bacteria, and rhizobium enhanced growth, nitrogen, and phosphorus uptake in chickpea

, , , &
Received 27 Dec 2023, Accepted 21 May 2024, Published online: 26 Jun 2024

References

  • AbdelHakam, M. R. 2011. Studies on solubilization and fertilization by phosphate ores and behavior of their associated elements in some Egyptian soils., Unpublished Ph.D. Thesis., Soil Science Department, Faculty of Agriculture, Ain Shams University, Egypt.
  • Acevedo, E., T. Galindo-Castañeda, F. Prada, M. Navia, and H. M. Romero. 2014. Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia. Applied Soil Ecology 80:26–33. doi: 10.1016/j.apsoil.2014.03.011.
  • Adjei-Nsiah, S., J. Kumah, E. Owusu-Bennoah, and F. Kanampiu. 2019. Influence of P sources and rhizobium inoculation on growth and yield of soybean genotypes on Ferric Lixisols of Northern Guinea savanna zone of Ghana. Communications in Soil Science and Plant Analysis 50 (7):853–68. doi: 10.1080/00103624.2019.1589489.
  • Alamzeb, M. I., and Inamullah. 2023. Management of phosphorus sources in combination with rhizobium and phosphate solubilizing bacteria improve nodulation, yield and phosphorus uptake in Chickpea. Gesunde Pflanzen 75 (3):549–64. doi: 10.1007/s10343-022-00722-2.
  • Anwar, S., F. Muhammad, A. Iqbal, M. Islam, M. Iqbal, M. Alamzeb, and B. Parmar. 2017. Phosphorus management improve productivity of wheat varieties under semiarid climates. J. Pharmacog Phytochem (SP1):259–63.
  • AOAC. 1990. Official Methods of Analysis of the Association of Official Analytical Chemists, vol. II, 15th ed., Sec.985.29. Arlington, VA: The Association.
  • Asif, I., A. Khan, I. Mazhar, and U. Ikram. 2017. Integrated use of phosphorus and organic matter improve fodder yield of moth bean (Vigna aconitifolia Jacq.) under irrigated and dryland conditions of Pakistan. Journal of AgriSearch 4:10–5.
  • Bargaz, A., K. Lyamlouli, M. Chtouki, Y. Zeroual, and D. Dhiba. 2018. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front.Microbio 9:1606.
  • Barrow, N. 2017. The effects of pH on phosphate uptake from the soil. Plant and Soil 410 (1-2):401–10. doi: 10.1007/s11104-016-3008-9.
  • Bremner, J., and C. Mulvaney. 1982. Nitrogentotal. In Method of soil analysis, Part II, ed. A.L. Page and D.R. Keeney, 2nd ed., 595–624. Madison, WI: Soil Sci. Soc. Am. Inc.
  • Chien, S., L. Prochnow, and H. Cantarella. 2009. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv.Agron 102:267–322.
  • Dell’Amico, E., L. Cavalca, and V. Andreoni. 2008. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biology and Biochemistry 40 (1):74–84. doi: 10.1016/j.soilbio.2007.06.024.
  • Dutta, D., and P. Bandyopadhyay. 2009. Performance of chickpea (Cicer arietinum L.) to application of phosphorus and bio-fertilizer in laterite soil. Archives of Agronomy and Soil Science. 55 (2):147–55. doi: 10.1080/03650340802398864.
  • Elhaissoufi, W., C. Ghoulam, A. Barakat, Y. Zeroual, and A. Bargaz. 2021. Phosphate bacterial solubilization: A key rhizosphere driving force enabling higher P use efficiency and crop productivity. Journal of Advanced Research 38:13–28. doi: 10.1016/j.jare.2021.08.014.
  • Gaur, A. 1990. Phosphate solubilizing micro-organisms as biofertilizer. Omega ScientificPublishers.
  • Geetha, K., E. Venkatesham, A. Hindumathi, and B. Bhadraiah. 2014. Isolation, screening and characterization of plant growth promoting bacteria and their effect on Vigna radita (L.) R. Wilczek. International Journal of Current Microbiology and Applied Sciences 3:799–899.
  • Giri, N., and N. Joshi. 2010. Growth and yield response of chick pea (Cicer arietinum) to seed inoculation with Rhizobium sp. Natural Science 8:232–6.
  • Górski, R., and T. Kleiber. 2010. Effect of effective microorganisms (EM) on nutrient contents in substrate and development and yielding of Rose (Rosax hybrida) and Gerbera (Gerbera jamesonii). Ecological Chemistry and Engineering 17:505–13.
  • Gurdeep, K., and M. S. Reddy. 2015. Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere 25 (3):428–37. doi: 10.1016/S1002-0160(15)30010-2.
  • Hussain, M. I., M. J. Akhtar, H. N. Asghar, and M. Ahmed. 2011. Growth, nodulation and yield of Mungbean (Vigna Mungo L.) as affected by Rhizobium inoculation and soil applied L-tryptophan. Soil Environment 30 (1):13–7.
  • Iqbal, A., A. Khan, S. Khalid, A. Shah, B. Parmar, S. Khalid, and A. Muhammad. (2019) Integrated management of phosphorus, organic sources, and beneficial microbes improve dry matter partitioning of maize. Communications in Soil Science and Plant Analysis 50 (20):2544–2569. doi: 10.1080/00103624.2019.1667378.
  • Iqbal, A., D. Qiang, W. Xiangru, G. Huiping, Z. Hengheng, Z. Xiling, and S. Meizhen. 2022. Low phosphorus tolerance in cotton genotypes is regulated by root morphology and physiology. Journal of Plant Growth Regulation 42 (6):3677–3695.
  • Iqbal, A., D. Qiang, W. Xiangru, G. Huiping, Z. Hengheng, Z. Xiling, and S. Meizhen. 2023a. Integrative physiological, transcriptome and metabolome analysis reveals the involvement of carbon and flavonoid biosynthesis in low phosphorus tolerance in cotton. Plant Physiology and Biochemistry: PPB 196:302–17. doi: 10.1016/j.plaphy.2023.01.042.
  • Iqbal, A., D. Qiang, W. Xiangru, G. Huiping, Z. Hengheng, Z. Xiling, and S. Meizhen. 2023b. Phosphorus and carbohydrate metabolism contributes to low phosphorus tolerance in cotton. BMC Plant Biology 23 (1):97. doi: 10.1186/s12870-023-04100-6.
  • Iqbal, A., D. Qiang, W. Xiangru, G. Huiping, Z. Hengheng, Z. Xiling, and S. Meizhen. 2023c. Genotypic Variation in Cotton Genotypes for Low Phosphorus Tolerance and Efficiency Under Different Growth Conditions. Gesunde Pflanzen 75 (5):1975–93. doi: 10.1007/s10343-022-00823-y.
  • Iqbal, A., G. Huiping, D. Qiang, W. Xiangru, Z. Hengheng, Z. Xiling, and S. Meizhen. 2023d. Differential responses of contrasting low phosphorus tolerant cotton genotypes under low phosphorus and drought stress. BMC Plant Biology 23 (1):168. doi: 10.1186/s12870-023-04171-5.
  • Iqbal, A., H. Gui, H. Zhang, X. Wang, N. Pang, Q. Dong, and M. Song. 2019a. Genotypic variation in cotton genotypes for phosphorus-use efficiency. Agronomy 9 (11):689. doi: 10.3390/agronomy9110689.
  • Iqbal, A., M. Song, Z. Shah, M. Alamzeb, and M. Iqbal. 2019b. Integrated use of plant residues, phosphorus and beneficial microbes improve hybrid maize productivity in semiarid climates. Acta Ecologica Sinica 39 (5):348–55. doi: 10.1016/j.chnaes.2018.09.005.
  • Jackson, M. L. 1970. Soil chemical analysis. New Delhi: Prentice Hall Ltd.
  • Jiang, D., H. Hengsdijk, T. B. Dai, W. de Boer, Q. Jing, and W. X. Cao. 2006. Long term effect of manure and inorgainc fertilizer on yield and soil fertility for a winter wheat- maize system in Jiangsu. China. Pedosph 16:25–32.
  • Kayoumu, M., A. Iqbal, N. Muhammad, X. Li, L. Li, X. Wang, H. Gui, Q. Qi, S. Ruan, R. Guo, et al. 2023. Phosphorus availability affects the photosynthesis and antioxidant system of contrasting low-P-tolerant cotton genotypes. Antioxidants 12 (2):466. doi: 10.3390/antiox12020466.
  • Kayoumu, M., X. Li, A. Iqbal, X. Wang, H. Gui, Q. Qi, S. Ruan, R. Guo, Q. Dong, X. Zhang, et al. 2022. Genetic variation in morphological traits in cotton and their roles in increasing phosphorus-useefficiency in response to low phosphorus availability. Frontiers in Plant Science 13:1051080. doi: 10.3389/fpls.2022.1051080.
  • Khaliq, A., M. K. Abbasi, and T. Hussain. 2006. Effects of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan. Bioresource Technology 97 (8):967–72. doi: 10.1016/j.biortech.2005.05.002.
  • Khan, A. 2015. Phosphorus and compost management influence maize (Zea mays) productivity under semiarid condition with and without phosphate solubilizing bacteria.Frontiers in Plant Science. 6: 1083. doi: 10.3389/fpls.2015.01083.
  • Khan, M. S., A. Zaidi, and P. A. Wani. 2007a. Role of phosphate solubilizing microorganism in sustainable agriculture-A review. Agronomy for Sustainable Development 27:29–43.
  • Khan, R., A. R. Gurmani, A. H. Gurmani, and M. S. Zia. 2007b. Effect of phosphorus application on wheat and rice yield under wheat-rice system. S. J. Agric 23:851.
  • Khan, S.-U.-T. A., S. Iqbal, Fahad, and Amanullah. 2016. Growth and productivity response of hybrid rice to application of animal manures, plant residues and phosphorus. Frontiers in Plant Science 7:1440. doi: 10.3389/fpls.2016.01440.
  • Kumar, A. 2016. Phosphate solubilizing bacteria in agriculture biotechnology: Diversity, mechanism and their role in plant growth and crop yield. International Journal of Advanced Research 4 (4):116–24. doi: 10.21474/IJAR01/111.
  • Kyei-Boahen, E. S., A. E. Slinkard, and F. L. Walley. 2002. Evaluation of rhizobial inoculation methods for chickpea. Agronomy Journal. 94 (4):851–9. doi: 10.2134/agronj2002.0851.
  • MNFSR. 2019. Agriculture Statistics of Pakistan 2018-2019. Ministry of National Food Security and Research (Economic Wing), Govt. of Pakistan,Islamabad.
  • Mondal, T., J. K. Datta, and N. K. Mondal. 2017. Chemical fertilizer in conjunction with biofertilizer and vermicompost induced changes in morpho-physiological and bio-chemical traits of mustard crop. Journal of the Saudi Society of Agricultural Sciences 16 (2):135–44. doi: 10.1016/j.jssas.2015.05.001.
  • Namvar, A., and R. S. Sharifi. 2011. Phenological and morphological response of chickpea (Cicer arietinum L.) to symbiotic and mineral nitrogen fertilization. Žemdirbystė (Agriculture) 98:121–30.
  • Nandania, V. A. 2005. Effect of biofertilizers on growth and yield of gram (Cicer arietinum L.) Var. Gujarat: Saurashtra University.
  • Nawab, K., A. Iqbal, S. Fahad, M. J. Khan, H. Akbar, I. Hussain, and A. Ali. 2017. Response of summer pulses (mung bean vs. mash bean) to integrated use of organic carbon sources and phosphorus in dry lands. African Journal of Agricultural Research 12:3470–90.
  • Park, J. H., N. Bolan, M. Megharaj, and R. Naidu. 2011. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.). Journal of Environmental Management 92 (4):1115–20. doi: 10.1016/j.jenvman.2010.11.031.
  • Prajapati, B., N. Gudadhe, V. Gamit, and H. Chhaganiya. 2017. Effect of integrated phosphorus management on growth, yield attributes and yield of chickpea. Farming and Management 2 (1):36–40. doi: 10.5958/2456-8724.2017.00006.6.
  • Pramanik, K., and A. Bera. 2012. Response of biofertilizers and phytohormone on growth and yield of chickpea (Cicer arietinium L.). Journal of Crop and Weed 8:45–9.
  • Rafael, R. B. A., M. L. Fernández-Marcos, S. Cocco, M. L. Ruello, D. C. Weindorf, V. Cardelli, and G. Corti. 2018. Assessment of potential nutrient release from phosphate rock and dolostone for application in acid soils. Pedosphere 28 (1):44–58. doi: 10.1016/S1002-0160(17)60437-5.
  • Raghuveer, M., V. Ram, I. Kar, and A. C. Maurya. 2015. Rice quality and chemical properties of soil influenced by phosphorus and PSB strains under acid soil. Environment and Ecology 33:1232–6.
  • Rudresh, D., M. Shivaprakash, and R. Prasad. 2005. Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Applied Soil Ecology 28 (2):139–46. doi: 10.1016/j.apsoil.2004.07.005.
  • Safirzadeh, S., M. Chorom, and N. Enayatizamir. 2019. Effect of phosphate solubilising bacteria (Enterobacter cloacae) on phosphorus uptake efficiency in sugarcane (Saccharum officinarum L.). Soil Research 57 (4):333–41. doi: 10.1071/SR18128.
  • Sarawgi, S., R. Tiwari, and R. Tripathi. 1999. Uptake and balance sheet of nitrogen and phosphorus in gram (Cicer arietinum) as influenced by phosphorus, biofertilizer and micronutrients under rainfed condition. Indian Journal of Agronomy. 44:768–72.
  • Sarkar, S., N. S. Devi, A. Singh, and I. Yimjenjang. 2018. Effect of single super phosphate and rock phosphate on growth & yield of rice. The Journal of Phytopharmacology 7:3654–6.
  • Saxena, J., S. Chandra, and L. Nain. 2013. Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. Journal of Soil Science and Plant Nutrition. 13:511–25.
  • Singh, R., S. K. Soni, and A. Kalra. 2013. Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23 (1):35–44. doi: 10.1007/s00572-012-0447-x.
  • Trolove, S. N., M. J. Hedley, G. J. D. Kirk, N. S. Bolan, and P. Loganathan. 2003. Progress in selected areas of rhizosphere research on P acquisition. Aus. Soil Research 41 (3):471–99. doi: 10.1071/SR02130.
  • Verma, J. P., J. Yadav, K. N. Tiwari, and A. Kumar. 2013. Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecological Engineering. 51:282–6. doi: 10.1016/j.ecoleng.2012.12.022.
  • Vessey, K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil. 255:571–86.
  • Viruel, E., L. E. Erazzú, L. Martínez Calsina, M. A. Ferrero, M. E. Lucca, and F. Siñeriz. 2014. Inoculation of maize with phosphate solubilizing bacteria: Effect on plant growth and yield. Journal of Soil Science and Plant Nutrition 14 (ahead):23. doi: 10.4067/S0718-95162014005000065.
  • Yadav, S., A. Verma, and V. Nepalia. 2016. Effect of phosphorus, sulphur and seaweed sap on growth, yield and nutrient uptake of chickpea (Cicer arietinum L.). Research on Crops 17 (3):496–502. doi: 10.5958/2348-7542.2016.00082.6.
  • Yanni, Y. G., R. Y. Rizk, F. K. A. El-Fattah, A. Squartini, V. Corich, A. Giacomini, F. de Bruijn, J. Rademaker, J. Maya-Flores, P. Ostrom, et al. 2001. The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Functional Plant Biology 28 (9):845–70. doi: 10.1071/PP01069.
  • Zafar, M., M. K. Abbasi, and A. Khaliq. 2013. Effect of different phosphorus sources on the growth, yield, energy content and phosphorus utilization efficiency in maize at Rawalakot Azad Jammu and Kashmir, Pakistan. Journal of Plant Nutrition. 36 (12):1915–34. doi: 10.1080/01904167.2013.819892.
  • Zafar-Ul-Hye, M., M. Ahmad, and S. M. Shahzad. 2013. Short Communication Synergistic effect of rhizobia and PGPR on the growth and nodulation of lentil seedlings under axenic conditions. Soil Environment 32:79–86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.